517 research outputs found

    Computational identification of signalling pathways in Plasmodium falciparum

    Get PDF
    Malaria is one of the world’s most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Reports have shown that the resistance of the parasite to existing drugs is increasing. Therefore, there is a huge and urgent need to discover and validate new drug or vaccine targets to enable the development of new treatments for malaria. The ability to discover these drug or vaccine targets can only be enhanced from our deep understanding of the detailed biology of the parasite, for example how cells function and how proteins organize into modules such as metabolic, regulatory and signal transduction pathways. It has been noted that the knowledge of signalling transduction pathways in Plasmodium is fundamental to aid the design of new strategies against malaria. This work uses a linear-time algorithm for finding paths in a network under modified biologically motivated constraints. We predicted several important signalling transduction pathways in Plasmodium falciparum. We have predicted a viable signalling pathway characterized in terms of the genes responsible that may be the PfPKB pathway recently elucidated in Plasmodium falciparum. We obtained from the FIKK family, a signal transduction pathway that ends up on a chloroquine resistance marker protein, which indicates that interference with FIKK proteins might reverse Plasmodium falciparum from resistant to sensitive phenotype. We also proposed a hypothesis that showed the FIKK proteins in this pathway as enabling the resistance parasite to have a mechanism for releasing chloroquine (via an efflux process). Furthermore, we also predicted a signalling pathway that may have been responsible for signalling the start of the invasion process of Red Blood Cell (RBC) by the merozoites. It has been noted that the understanding of this pathway will give insight into the parasite virulence and will facilitate rational vaccine design against merozoites invasion. And we have a host of other predicted pathways, some of which have been used in this work to predict the functionality of some proteins

    An in silico Approach to Detect Efficient Malaria Drug Targets to Combat the Malaria Resistance Problem

    Get PDF
    Resistance to malaria drugs is a major challenging problem in most parts of the world especially in the African continent where about ninety per cent of malaria cases occur. As a response to this alarming problem, the World Health Organisation (W.H.O) recommends that all countries experiencing resistance to conventional monotherapies, such as chloroquine, amodiaquine or sulfadoxine–pyrimethamine, should use combination therapies [1]. Therefore there is a need to discover new drug targets that are able to target the malarial parasite at distinct pathways for an efficient malaria drug. In this paper, we presented a machine-learning tool which is able to identify novel drug targets from the metabolic network of Plasmodium falciparum. With our tool we identified among others 19 drug targets confirmed from literature which we analyzed further with a sophisticated gene expression analysis tool. Our data was clustered using common distance similarity measurements and hierarchical clustering to propose a profound combination of drug targets. Our result suggests that two or more enzymatic reactions from the list of our drug targets which span across about ten pathways (Table 2) could be combined to target at distinct time points in the parasite's intraerythrocytic developmental cycle to detect efficient malaria drug target combination

    Notes and Comments

    Get PDF

    3D time series analysis of cell shape using Laplacian approaches

    Get PDF
    Background: Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes. Results: We present a framework for 3D+time cell shape analysis. The main contribution is three-fold: First, we develop a fast, automatic random walker method for cell segmentation. Second, a novel topology fixing method is proposed to fix segmented binary volumes without spherical topology. Third, we show that algorithms used for each individual step of the analysis pipeline (cell segmentation, topology fixing, spherical parameterization, and shape representation) are closely related to the Laplacian operator. The framework is applied to the shape analysis of neutrophil cells. Conclusions: The method we propose for cell segmentation is faster than the traditional random walker method or the level set method, and performs better on 3D time-series of neutrophil cells, which are comparatively noisy as stacks have to be acquired fast enough to account for cell motion. Our method for topology fixing outperforms the tools provided by SPHARM-MAT and SPHARM-PDM in terms of their successful fixing rates. The different tasks in the presented pipeline for 3D+time shape analysis of cells can be solved using Laplacian approaches, opening the possibility of eventually combining individual steps in order to speed up computations

    So rare we need to hunt for them: reframing the ethical debate on incidental findings

    Get PDF
    Incidental findings are the subject of intense ethical debate in medical genomic research. Every human genome contains a number of potentially disease-causing alterations that may be detected during comprehensive genetic analyses to investigate a specific condition. Yet available evidence shows that the frequency of incidental findings in research is much lower than expected. In this Opinion, we argue that the reason for the low level of incidental findings is that the filtering techniques and methods that are applied during the routine handling of genomic data remove these alterations. As incidental findings are systematically filtered out, it is now time to evaluate whether the ethical debate is focused on the right issues. We conclude that the key question is whether to deliberately target and search for disease-causing variations outside the indication that has originally led to the genetic analysis, for instance by using positive lists and algorithms

    Quantitative analysis of chromatin interaction changes upon a 4.3 Mb deletion at mouse 4E2

    Get PDF
    BACKGROUND: Circular chromosome conformation capture (4C) has provided important insights into three dimensional (3D) genome organization and its critical impact on the regulation of gene expression. We developed a new quantitative framework based on polymer physics for the analysis of paired-end sequencing 4C (PE-4Cseq) data. We applied this strategy to the study of chromatin interaction changes upon a 4.3 Mb DNA deletion in mouse region 4E2. RESULTS: A significant number of differentially interacting regions (DIRs) and chromatin compaction changes were detected in the deletion chromosome compared to a wild-type (WT) control. Selected DIRs were validated by 3D DNA FISH experiments, demonstrating the robustness of our pipeline. Interestingly, significant overlaps of DIRs with CTCF/Smc1 binding sites and differentially expressed genes were observed. CONCLUSIONS: Altogether, our PE-4Cseq analysis pipeline provides a comprehensive characterization of DNA deletion effects on chromatin structure and function

    Concurrent detection of autolysosome formation and lysosomal degradation by flow cytometry in a high-content screen for inducers of autophagy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autophagy mediates lysosomal degradation of cytosolic components. Recent work has associated autophagic dysfunction with pathologies, including cancer and cardiovascular disease. To date, the identification of clinically-applicable drugs that modulate autophagy has been hampered by the lack of standardized assays capable of precisely reporting autophagic activity.</p> <p>Results</p> <p>We developed and implemented a high-content, flow-cytometry-based screening approach for rapid, precise, and quantitative measurements of pharmaceutical control over autophagy. Our assay allowed for time-resolved individual measurements of autolysosome formation and degradation, and endolysosomal activities under both basal and activated autophagy conditions. As proof of concept, we analyzed conventional autophagy regulators, including cardioprotective compounds aminoimidazole carboxamide ribonucleotide (AICAR), rapamycin, and resveratrol, and revealed striking conditional dependencies of rapamycin and autophagy inhibitor 3-methyladenine (3-MA). To identify novel autophagy modulators with translational potential, we screened the Prestwick Chemical Library of 1,120 US Food and Drug Administration (FDA)-approved compounds for impact on autolysosome formation. In all, 38 compounds were identified as potential activators, and 36 as potential inhibitors of autophagy. Notably, amongst the autophagy enhancers were cardiac glycosides, from which we selected digoxin, strophanthidin, and digoxigenin for validation by standard biochemical and imaging techniques. We report the induction of autophagic flux by these cardiac glycosides, and the concentrations allowing for specific enhancement of autophagic activities without impact on endolysosomal activities.</p> <p>Conclusions</p> <p>Our systematic analysis of autophagic and endolysosomal activities outperformed conventional autophagy assays and highlights the complexity of drug influence on autophagy. We demonstrate conditional dependencies of established regulators. Moreover, we identified new autophagy regulators and characterized cardiac glycosides as novel potent inducers of autophagic flux.</p

    A novel application of motion analysis for detecting stress responses in embryos at different stages of development.

    Get PDF
    Motion analysis is one of the tools available to biologists to extract biologically relevant information from image datasets and has been applied to a diverse range of organisms. The application of motion analysis during early development presents a challenge, as embryos often exhibit complex, subtle and diverse movement patterns. A method of motion analysis able to holistically quantify complex embryonic movements could be a powerful tool for fields such as toxicology and developmental biology to investigate whole organism stress responses. Here we assessed whether motion analysis could be used to distinguish the effects of stressors on three early developmental stages of each of three species: (i) the zebrafish Danio rerio (stages 19 h, 21.5 h and 33 h exposed to 1.5% ethanol and a salinity of 5); (ii) the African clawed toad Xenopus laevis (stages 24, 32 and 34 exposed to a salinity of 20); and iii) the pond snail Radix balthica (stages E3, E4, E6, E9 and E11 exposed to salinities of 5, 10 and 15). Image sequences were analysed using Sparse Optic Flow and the resultant frame-to-frame motion parameters were analysed using Discrete Fourier Transform to quantify the distribution of energy at different frequencies. This spectral frequency dataset was then used to construct a Bray-Curtis similarity matrix and differences in movement patterns between embryos in this matrix were tested for using ANOSIM

    Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer

    No full text
    Early-onset prostate cancer (EO-PCA) represents the earliest clinical manifestation of prostate cancer. To compare the genomic alteration landscapes of EO-PCA with "classical" (elderly-onset) PCA, we performed deep sequencing-based genomics analyses in 11 tumors diagnosed at young age, and pursued comparative assessments with seven elderly-onset PCA genomes. Remarkable age-related differences in structural rearrangement (SR) formation became evident, suggesting distinct disease pathomechanisms. Whereas EO-PCAs harbored a prevalence of balanced SRs, with a specific abundance of androgen-regulated ETS gene fusions including TMPRSS2:ERG, elderly-onset PCAs displayed primarily non-androgen-associated SRs. Data from a validation cohort of > 10,000 patients showed age-dependent androgen receptor levels and a prevalence of SRs affecting androgen-regulated genes, further substantiating the activity of a characteristic "androgen-type" pathomechanism in EO-PCA
    corecore