356 research outputs found
Variants Near MC4R Are Associated With Obesity and Influence Obesity-Related Quantitative Traits in a Population of Middle-Aged People: Studies of 14,940 Danes
OBJECTIVE— Variants downstream of the melanocortin-4 receptor gene (MC4R) have been reported to associate with obesity. We examined rs17782313, rs17700633, rs12970134, rs477181, rs502933, and rs4450508 near MC4R for association with obesity-related quantitative traits, obesity, and type 2 diabetes in Danish individuals
Heterogeneity in glucose response curves during an oral glucose tolerance test and associated cardiometabolic risk
We aimed to examine heterogeneity in glucose response curves during an oral glucose tolerance test with multiple measurements and to compare cardiometabolic risk profiles between identified glucose response curve groups. We analyzed data from 1,267 individuals without diabetes from five studies in Denmark, the Netherlands and the USA. Each study included between 5 and 11 measurements at different time points during a 2-h oral glucose tolerance test, resulting in 9,602 plasma glucose measurements. Latent class trajectories with a cubic specification for time were fitted to identify different patterns of plasma glucose change during the oral glucose tolerance test. Cardiometabolic risk factor profiles were compared between the identified groups. Using latent class trajectory analysis, five glucose response curves were identified. Despite similar fasting and 2-h values, glucose peaks and peak times varied greatly between groups, ranging from 7-12 mmol/L, and 35-70 min. The group with the lowest and earliest plasma glucose peak had the lowest estimated cardiovascular risk, while the group with the most delayed plasma glucose peak and the highest 2-h value had the highest estimated risk. One group, with normal fasting and 2-h values, exhibited an unusual profile, with the highest glucose peak and the highest proportion of smokers and men. The heterogeneity in glucose response curves and the distinct cardiometabolic risk profiles may reflect different underlying physiologies. Our results warrant more detailed studies to identify the source of the heterogeneity across the different phenotypes and whether these differences play a role in the development of type 2 diabetes and cardiovascular disease
Heterozygous Mutation of Drosophila Opa1 Causes the Development of Multiple Organ Abnormalities in an Age-Dependent and Organ-Specific Manner
Optic Atrophy 1 (OPA1) is a ubiquitously expressed dynamin-like GTPase in the inner mitochondrial membrane. It plays important roles in mitochondrial fusion, apoptosis, reactive oxygen species (ROS) and ATP production. Mutations of OPA1 result in autosomal dominant optic atrophy (DOA). The molecular mechanisms by which link OPA1 mutations and DOA are not fully understood. Recently, we created a Drosophila model to study the pathogenesis of optic atrophy. Heterozygous mutation of Drosophila OPA1 (dOpa1) by P-element insertion results in no obvious morphological abnormalities, whereas homozygous mutation is embryonic lethal. In eye-specific somatic clones, homozygous mutation of dOpa1 causes rough (mispatterning) and glossy (decreased lens deposition) eye phenotypes in adult Drosophila. In humans, heterozygous mutations in OPA1 have been associated with mitochondrial dysfunction, which is predicted to affect multiple organs. In this study, we demonstrated that heterozygous dOpa1 mutation perturbs the visual function and an ERG profile of the Drosophila compound eye. We independently showed that antioxidants delayed the onset of mutant phenotypes in ERG and improved larval vision function in phototaxis assay. Furthermore, heterozygous dOpa1 mutation also caused decreased heart rate, increased heart arrhythmia, and poor tolerance to stress induced by electrical pacing. However, antioxidants had no effects on the dysfunctional heart of heterozygous dOpa1 mutants. Under stress, heterozygous dOpa1 mutations caused reduced escape response, suggesting abnormal function of the skeletal muscles. Our results suggest that heterozygous mutation of dOpa1 shows organ-specific pathogenesis and is associated with multiple organ abnormalities in an age-dependent and organ-specific manner
Some pioneers of European human genetics
Some of the pioneers of human genetics across Europe are described, based on a series of 100 recorded interviews made by the author. These interviews, and the memories of earlier workers in the field recalled by interviewees, provide a vivid picture, albeit incomplete, of the early years of human and medical genetics. From small beginnings in the immediate post-World War 2 years, human genetics grew rapidly across many European countries, a powerful factor being the development of human cytogenetics, stimulated by concerns over the risks of radiation exposure. Medical applications soon followed, with the recognition of human chromosome abnormalities, the need for genetic counselling, the possibility of prenatal diagnosis and later, the applications of human molecular genetics. The evolution of the field has been strongly influenced by the characters and interests of the relatively small number of founding workers in different European countries, as well as by wider social, medical and scientific factors in the individual countries
A novel syndrome of paediatric cataract, dysmorphism, ectodermal features, and developmental delay in Australian Aboriginal family maps to 1p35.3-p36.32
Background: A novel phenotype consisting of cataract, mental retardation, erythematous skin rash and facial dysmorphism was recently described in an extended pedigree of Australian Aboriginal descent. Large scale chromosomal re-arrangements had previously been ruled out. We have conducted a genome-wide scan to map the linkage region in this family.Methods: Genome-wide linkage analysis using Single Nucleotide Polymorphism (SNP) markers on the Affymetrix 10K SNP array was conducted and analysed using MERLIN. Three positional candidate genes (ZBTB17, EPHA2 and EPHB2) were sequenced to screen for segregating mutations. Results: Under a fully penetrant, dominant model, the locus for this unique phenotype was mapped to chromosome 1p35.3-p36.32 with a maximum LOD score of 2.41. The critical region spans 48.7 cM between markers rs966321 and rs1441834 and encompasses 527 transcripts from 364 annotated genes. No coding mutations were identified in three positional candidate genes EPHA2, EPHB2 or ZBTB17. The region overlaps with a previously reported region for Volkmann cataract and the phenotype has similarity to that reported for 1p36 monosomy. Conclusions: The gene for this syndrome is located in a 25.6 Mb region on 1p35.3-p36.32. The known cataract gene in this region (EPHA2) does not harbour mutations in this family, suggesting that at least one additional gene for cataract is present in this region.Kathryn Hattersley, Kate J Laurie, Jan E Liebelt, Jozef Gecz, Shane R Durkin, Jamie E Craig and Kathryn P Burdo
Family and Population-Based Studies of Variation within the Ghrelin Receptor Locus in Relation to Measures of Obesity
The growth hormone secretagogue receptor (GHSR) is mediating hunger sensation when stimulated by its natural ligand ghrelin. In the present study, we tested the hypothesis that common and rare variation in the GHSR locus are related to increased prevalence of obesity and overweight among Whites.In a population-based study sample of 15,854 unrelated, middle-aged Danes, seven variants were genotyped to capture common variation in an 11 kbp region including GHSR. These were investigated for their individual and haplotypic association with obesity. None of these analyses revealed consistent association with measures of obesity. A -151C/T promoter mutation in the GHSR was found in two unrelated obese patients. One family presented with complete co-segregation, but the other with incomplete co-segregation. The mutation resulted in an increased transcriptional activity (p<0.02) and introduction of a specific binding for Sp-1-like nuclear extracts relative to the wild type. The -151C/T mutation was genotyped in the 15,854 Danes with a minor allele frequency of 0.01%. No association with obesity in carriers (mean BMI: 27+/-4 kg/m(2)) versus non-carriers (mean BMI: 28+/-5 kg/m(2)) (p>0.05) could be shown.In a population-based study sample of 15,854 Danes no association between GHSR genotypes and measures of obesity and overweight was found. Also, analyses of GHSR haplotypes lack consistent associations with obesity related traits. A rare functional GHSR promoter mutation variant was identified, yet there was no consistent relationship with obesity in neither family- nor population-based studies
A Blue Spectral Shift of the Hemoglobin Soret Band Correlates with the Age (Time Since Deposition) of Dried Bloodstains
The ability to determine the time since deposition of a bloodstain found at a crime scene could prove invaluable to law enforcement investigators, defining the time frame in which the individual depositing the evidence was present. Although various methods of accomplishing this have been proposed, none has gained widespread use due to poor time resolution and weak age correlation. We have developed a method for the estimation of the time since deposition (TSD) of dried bloodstains using UV-VIS spectrophotometric analysis of hemoglobin (Hb) that is based upon its characteristic oxidation chemistry. A detailed study of the Hb Soret band (λmax = 412 nm) in aged bloodstains revealed a blue shift (shift to shorter wavelength) as the age of the stain increases. The extent of this shift permits, for the first time, a distinction to be made between bloodstains that were deposited minutes, hours, days and weeks prior to recovery and analysis. The extent of the blue shift was found to be a function of ambient relative humidity and temperature. The method is extremely sensitive, requiring as little as a 1 µl dried bloodstain for analysis. We demonstrate that it might be possible to perform TSD measurements at the crime scene using a portable low-sample-volume spectrophotometer
Linkage of cystic fibrosis to the proα2(I) collagen gene, COL1A2, on chromosome 7
A linkage has been detected between the locus for cystic fibrosis (CF) and the proα2(I) collagen gene (COL1A2) which is located in the region q21.3→q22.1 of chromosome 7. Based on the combined linkage data derived from 50 informative two-generation nuclear families collected in Canada and Denmark, the distance between COL1A2 and CF is estimated to be 19 centiMorgans. Close lilnkage has also been detected between COL1A2 and the DNA market D7S15 (formerly D0CRI-917) and the serum enzyme activity marker paraoxonase (PON), both of which have previously been found linked to CF. The results of the two-oint and three-point linkage analyses indicate that the most probable order of these four genetic loci is COL1A2-D7S15-PON-CF.published_or_final_versio
- …