1,684 research outputs found

    Efforts to mitigate the economic impact of the COVID-19 pandemic: potential entry points for neglected tropical diseases

    Get PDF
    BACKGROUND: The damage inflicted by the coronavirus diseases 2019 (COVID-19) pandemic upon humanity is and will continue to be considerable. Unprecedented progress made in global health over the past 20 years has reverted and economic growth has already evaporated, giving rise to a global recession, the likes of which we may not have experienced since the Second World War. Our aim is to draw the attention of the neglected tropical disease (NTD) community towards some of the major emerging economic opportunities which are quickly appearing on the horizon as a result of COVID-19. MAIN TEXT: This scoping review relied on a literature search comprised of a sample of articles, statements, and press releases on initiatives aimed at mitigating the impact of COVID-19, while supporting economic recovery. Of note, the donor scenario and economic development agendas are highly dynamic and expected to change rapidly as the COVID-19 pandemic unfolds, as are donor and lender priorities. CONCLUSIONS: The NTD community, particularly in low- and middle-income countries (LMICs), will need to work quickly, diligently, and in close collaboration with decision-makers and key stakeholders, across sectors at national and international level to secure its position. Doing so might enhance the odds of grasping potential opportunities to access some of the massive resources that are now available in the form of contributions from corporate foundations, trust funds, loans, debt relieve schemes, and other financial mechanisms, as part of the ongoing and future economic development agendas and public health priorities driven by the COVID-19 pandemic. This paper should serve as a starting point for the NTD community to seek much needed financial support in order to sustain and revitalize control and elimination efforts pertaining to NTDs in LMICs

    Magnetic properties of the Kagom mixed compounds CoxNi1 x 3V2O8

    Get PDF
    The magnetic properties of the mixed compounds CoxNi1 x 3 V2O8 CNVO investigated by magnetization and neutron diffraction measurements are presented. Unlike their parent compounds Ni3V2O8 NVO and Co3V2O8 CVO , only one magnetic phase transition into an antiferromagnetic phase was detected for powder samples with x 0.27, 0.52, and 0.76. The magnetic structures are modulated according to a propagation vector k delta,0,0 with delta being dependent on the composition parameter x. Furthermore, magnetization data of a CVO single crystal is featured, which is qualitatively different from previous publications and exhibits a controversial aspect concerning the behavior of the curve under an applied magnetic field along the b axi

    The troubadour Marcabru and his public

    Get PDF
    Vanadium(V)-containing oxides show superior intercalation properties for alkaline ions, although the performance of the material strongly depends on its surface morphology. In this work, intercalation activity of LiV3_{3}O8_{8}, prepared by a conventional solid state synthesis, is demonstrated for the first time in non-aqueous Li,Na-ion hybrid batteries with Na as negative electrode, and different Na/Li ratios in the electrolyte. In the pure Na-ion cell, one Na per formula unit of LiV3_{3}O8_{8} can be reversibly inserted at room temperature via a two-step process, while further intercalation leads to gradual amorphisation of the material, with a specific capacity of 190 mAhg1^{−1} after 10 cycles in the potential window of 0.8–3.4 V. Hybrid Li,Na-ion batteries feature simultaneous intercalation of Li+^+ and Na+^+ cations into LiV3_{3}O8_{8}, resulting in the formation of a second phase. Depending on the electrolyte composition, this second phase bears structural similarities either to Li0.7_{0.7}Na0.7_{0.7}V3_{3}O8_{8} in Na-rich electrolytes, or to LiV3_{3}O8_{8} in Li-rich electrolytes. The chemical diffusion coefficients of Na+ and Li+ in crystalline LiV3_{3}O8_{8} are very close, hence explaining the co-intercalation of these cations. As DFT calculations show, once formed, the Li0.7_{0.7}Na0.7_{0.7}V3_{3}O8_{8}-type structure favors intercalation of Na+^+, whereas the LiV3_{3}O8_{8}-type prefers to accommodate Li+^+ cations

    Strategies supporting the prevention and control of neglected tropical diseases during and beyond the COVID-19 pandemic

    Get PDF
    Emerging and re-emerging zoonotic diseases represent a public health challenge of international concern. They include a large group of neglected tropical diseases (NTDs), many of which are of zoonotic nature. Coronavirus disease 2019 (COVID-19), another emerging zoonotic disease, has just increased the stakes exponentially. Most NTDs are subject to the impact of some of the very same human-related activities triggering other emerging and re-emerging diseases, including COVID-19, severe acute respiratory syndrome (SARS), bird flu and swine flu. It is conceivable that COVID-19 will exacerbate the NTDs, as it will divert much needed financial and human resources. There is considerable concern that recent progress achieved with control and elimination efforts will be reverted. Future potential strategies will need to reconsider the determinants of health in NTDs in order to galvanize efforts and come up with a comprehensive, well defined programme that will set the stage for an effective multi-sectorial approach. In this Commentary, we propose areas of potential synergies between the COVID-19 pandemic control efforts, other health and non-health sector initiatives and NTD control and elimination programmes

    Calculation of the Aharonov-Bohm wave function

    Full text link
    A calculation of the Aharonov-Bohm wave function is presented. The result is a series of confluent hypergeometric functions which is finite at the forward direction.Comment: 12 pages in LaTeX, and 3 PostScript figure

    Ionothermal synthesis of activated carbon from waste PET bottles as anode materials for lithium-ion batteries

    Get PDF
    Waste polyethylene terephthalate (PET) bottles have become a significant post-consumer plastic waste with attendant environmental problems. Hence, ionothermal synthesis has been used to prepare activated carbon (AC) anode materials from waste PET for both high performance and sustainable lithium-ion batteries (LIB). Particularly, using choline chloride deep eutectic salts (CU-DES) does not require post-synthesis washing and thereby reduces the complexity of the process and produces materials with unique low-surface area, higher levels of graphitization/ordering, and high nitrogen doping in the obtained ACs. The results show that the AC produced using CU-DES (PET-CU-A-ITP2) gave good electrochemical performance. Even though the material possesses a low surface area (∼23 m2 g−1), it displays a gravimetric capacity (GC) of ∼460 mA h g−1 and a coulombic efficiency (CE) of ∼53% in the 1st cycle and very good cycling performance with a capacity retention of 98% from the 2nd to the 100th cycle. The superior electrochemical performance of the PET-CU-A-ITP2 anode was found to be due to its better graphitization/ordering and dense structure which results in higher capacity, formation of less solid electrolyte interphase, and higher CE. These results show that dense carbons can be exploited as high-performance anodes in LIBs. Also, this research presents both a pathway for waste PET management and a waste-energy approach that could offer cheaper and greener LIBs to meet the sustainable development goals

    Magnetism and spin-orbit coupling in Ir-based double perovskites La(2x_(2-xSrx_xCoIrO6_6

    Full text link
    We have studied Ir spin and orbital magnetic moments in the double perovskites La2x_{2-x}Srx_xCoIrO6_6 by x-ray magnetic circular dichroism. In La2_2CoIrO6_6, Ir4+^{4+} couples antiferromagnetically to the weak ferromagnetic moment of the canted Co2+^{2+} sublattice and shows an unusually large negative total magnetic moment (-0.38\,μB\mu_{\text B}/f.u.) combined with strong spin-orbit interaction. In contrast, in Sr2_2CoIrO6_6, Ir5+^{5+} has a paramagnetic moment with almost no orbital contribution. A simple kinetic-energy-driven mechanism including spin-orbit coupling explains why Ir is susceptible to the induction of substantial magnetic moments in the double perovskite structure.Comment: 6 pages, 8 figure
    corecore