

# **High-Pressure Investigations of spinel-type \text{Li}TM\_2\text{O}\_4** (*TM* = transition metal) cathode materials

C. Braun,<sup>[a,b]</sup>\* N. Kiziltas Yavuz,<sup>[b]</sup> K. Nikolowski,<sup>[c,d]</sup> J.M. Gallardo-Amores,<sup>[e]</sup> M. E. Arroyo de Dompablo,<sup>[e]</sup> H. Ehrenberg<sup>[b,c]</sup>

[a] Technische Universität Dresden, Institut für Werkstoffwissenschaft (IfWW), D-01062 Dresden, Germany.
[b] Karlsruher Institut für Technologie (KIT), Institut für Anorganische Chemie, Engesserstraße 15, D-76131 Karlsruhe, Germany,
[c] Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien (IAM), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen

[d] IFW Dresden, Institut für Komplexe Materialien, Helmholtzstr. 20, D-01069 Dresden, Germany

[e] Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain

## Introduction

New synthesis strategies are needed to prepare novel electrode materials for lithium-ion batteries. High-pressure / high-temperature routes are widely used within other fields of Solid State Chemistry to induce structural transformations of materials, conducting to novel polymorphs possessing structures not accessible at ambient pressure. The high pressure treatment changes both the crystal structure as well as the electronic characteristics of the material. High pressure driven transformations of several electrode materials have been studied and reported, for example  $Li_xFePO_4$ ,<sup>[1,2]</sup>  $V_2O_5$ ,<sup>[3]</sup>  $Li_2MSiO_4$  (M = Mn, Co).<sup>[4,5]</sup> It is proven that after exposure to high pressure/high temperature conditions, the electrochemical properties varied compared to the ambient pressure materials. For  $LiMn_2O_4$  various studies report structural examinations at high pressure of these spinel phase<sup>[6-9]</sup>. But, only little is known about the electrochemical behaviour of these phases, when they are used as intercalation compound for an electrode in a lithium ion battery.<sup>[10]</sup> In this work we investigate the pressure driven structural and electrochemical modifications of spinel  $LiTM_2O_4$  (TM = transition metal) cathode materials.

### **Experimental Approach:**





High-pressure experiments are performed in a 1000 tons Walker-type multianvil press. The figure shows the step by step process of mounting the assembley.

Phasetransition to the high-pressure phase of LiMn<sub>2</sub>O<sub>4</sub> (CaFe<sub>2</sub>O<sub>4</sub>-type) from 6 GPa on visible.

*2θ*/°

#### **DFT-Calculations**



**Enthalpy-pressure diagram for the transition of LiMn<sub>2</sub>O<sub>4</sub>** 



**Energy-volume diagram of LiMn<sub>2</sub>O<sub>4</sub>** 

|                                  | B (GPa) | <b>B</b> , | V (A <sup>3</sup> ) | E (eV) |
|----------------------------------|---------|------------|---------------------|--------|
| Spinel                           | 108.1   | 4.2        | 74.95               | 46.795 |
| CaFe <sub>2</sub> O <sub>4</sub> | 108.9   | 5.1        | 70.23               | 46.564 |

M. E. Arroyo de Dompablo, N. Biskup, J.M. Gallardo-Amores, E. Morán, H. Ehrenberg, U. Amador, Chem. Mater. 2010, 22, 994.

- M. E. Arroyo de Dompablo, J.M. Gallardo-Amores, U. Amador, *Electrochem. Solid St.* 2005, 8, A564-A569.
- M. E. Arroyo de Dompablo, J. M. Gallardo-Amores, U. Amador, E. Morán, *Electrochem. Commun.* 2007, 9, 1305-1310.
- M. E. Arroyo de Dompablo, U. Amador, J.M. Gallardo-Amores, E. Morán, H. Ehrenberg, L. Dupont, R. Dominko, J. Power Sources 2009, 189, 638.
- M. E. Arroyo de Dompablo, R. Dominko, J.M. Gallardo-Amores, L. Dupont, G. Mali, H. Ehrenberg, J. Jamnik, E. Moran, Chem Mater 2008, 20, 5574-5584.
- P. Piszora, W. Nowicki, J. Darul, B. Bojanowski, S. Carlson, Y. Cerenius, Radiat. Phys. Chem. 2009, 78, S89-S92.
- J. Darul, W. Nowicki, C. Lathe, P. Piszora, Radiat. Phys. Chem. 2011, 80, 1014-1018.
- A. Paolone, A. Sacchetti, P. Postorino, R. Cantelli, A. Congeduti, G. Rousse, C. Masquelier, Solid State Ionics 2005, 176, 635-639.
- K. Tokiwa, K. Matsukura, S. Kasahara, S. Tsuda, S. Mikusu, K. Takeuchi, A. Iyo, Y. Tanaka, J. Akimoto, J. Awaka, N. Kijima, Y. Takahashi, T. Watanabe, J. Phys.: Conf. Ser. 2009, 150, 042210.
- K. Yamaura, Q. Huang, L. Zhang, K. Takada, Y. Baba, T. Nagai, Y. Matsui, K. Kosuda, E. Takayama-Muromachi, J. Am. Chem. Soc. 2006, 128, 9448-9456.