1,090 research outputs found

    A very deep Chandra observation of Abell 1795: The Cold Front and Cooling Wake

    Get PDF
    We present a new analysis of very deep Chandra observations of the galaxy cluster Abell 1795. Utilizing nearly 750 ks of net ACIS imaging, we are able to resolve the thermodynamic structure of the Intracluster Medium (ICM) on length scales of ~ 1 kpc near the cool core. We find several previously unresolved structures, including a high pressure feature to the north of the BCG that appears to arise from the bulk motion of Abell 1795's cool core. To the south of the cool core, we find low temperature (~ 3 keV), diffuse ICM gas extending for distances of ~ 50 kpc spatially coincident with previously identified filaments of H-alpha emission. Gas at similar temperatures is also detected in adjacent regions without any H-alpha emission. The X-ray gas coincident with the H-alpha filament has been measured to be cooling spectroscopically at a rate of ~ 1 Solar Masses/ yr, consistent with measurements of the star formation rate in this region as inferred from UV observations, suggesting that the star formation in this filament as inferred by its Hα\alpha and UV emission can trace its origin to the rapid cooling of dense, X-ray emitting gas. The H-alpha filament is not a unique site of cooler ICM, however, as ICM at similar temperatures and even higher metallicities not cospatial with Hα\alpha emission is observed just to the west of the H-alpha filament, suggesting that it may have been uplifted by Abell 1795's central active galaxy. Further simulations of cool core sloshing and AGN feedback operating in concert with one another will be necessary to understand how such a dynamic cool core region may have originated and why the H-alpha emission is so localized with respect to the cool X-ray gas despite the evidence for a catastrophic cooling flow.Comment: 14 Pages, 10 Figures, Resubmitted to ApJ after first referee report, Higher Resolution Figures available upon reques

    Comparison of Functional Antagonism Between Isoproterenol and M2 Muscarinic Receptors in Guinea Pig Ileum and Trachea

    Get PDF
    The ability of the M2 muscarinic receptor to mediate an inhibition of the relaxant effects of forskolin and isoproterenol was investigated in guinea pig ileum and trachea. In some experiments, trachea was first treated with 4-diphenylacetoxy-Nmethylpiperidine (4-DAMP) mustard to inactivate M3 receptors. The contractile response to oxotremorine-M was measured subsequently in the presence of both histamine (10 mM) and isoproterenol (10 nM). Under these conditions, [[2-[(diethylamino) methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3b]- [1,4]benzodiazepine-6-one (AF-DX 116) antagonized the contractile response to oxotremorine-M in a manner consistent with an M3 mechanism. However, when the same experiment was repeated using forskolin (4 mM) instead of isoproterenol, the response to oxotremorine-M exhibited greater potency and was antagonized by AF-DX 116 in a manner consistent with an M2 mechanism. We also measured the effects of pertussis toxin treatment on the ability of isoproterenol to inhibit the contraction elicited by a single concentration of either histamine (0.3 mM) or oxotremorine-M (40 nM) in both the ileum and trachea. Pertussis toxin treatment had no significant effect on the potency of isoproterenol for inhibiting histamine-induced contractions in the ileum and trachea. In contrast, pertussis toxin treatment enhanced the relaxant potency of isoproterenol against oxotremorine-M-induced contractions in the ileum but not in the trachea. Also, pertussis toxin treatment enhanced the relaxant potency of forskolin against oxotremorine-M-induced contractions in the ileum and trachea. We investigated the relaxant potency of isoproterenol when very low, equi-effective (i.e., 20–34% of maximal response) concentrations of either histamine or oxotremorine-M were used to elicit contraction. Under these conditions, isoproterenol exhibited greater relaxant potency against histamine in the ileum but exhibited similar relaxant potencies against histamine and oxotremorine-M in the trachea. Following 4-DAMP mustard treatment, a low concentration of oxotremorine-M (10 nM) had no contractile effect in either the ileum or trachea. Nevertheless, in 4-DAMP mustard- treated tissue, oxotremorine-M (10 nM) reduced the relaxant potency of isoproterenol against histamine-induced contractions in the ileum, but not in the trachea. We conclude that in the trachea the M2 receptor mediates an inhibition of the relaxant effects of forskolin, but not isoproterenol, and the decreased relaxant potency of isoproterenol against contractions elicited by a muscarinic agonist relative to histamine is not due to activation of M2 receptors but rather to the greater contractile stimulus mediated by the M3 receptor compared with the H1 histamine receptor

    Einfluss einer akuten Nierenschädigung des Spenders auf den Posttransplantationsverlauf bei postmortalen Nierentransplantationen

    Full text link
    Aufgrund des Organmangels werden zunehmend Organe mit nicht optimalen Merkmalen zur Organtransplantation verwendet. In der vorliegenden Studie wurde der Posttransplantationsverlauf von Empfaengern von Nieren von Spendern mit ANS (ab AKIN Stadium 1) und ohne ANS verglichen. Dazu wurden alle 107 Patienten, die eine ANS-Niere zwischen August 2004 und Juli 2014 am Transplantationszentrum des UKM erhielten, mit den jeweils nachfolgend transplantierten Patienten mit Nieren ohne ANS verglichen. Es zeigte sich kein Unterschied im Patientenueberleben nach 5 Jahren zwischen den beiden Gruppen, das zensierte sowie auch das unzensierte Transplantatueberleben waren jedoch in der Gruppe mit ANS Nieren signifikant geringer. Es traten in der ANS-Gruppe haeufiger verzoegerte Transplantatfunktionen auf und die eGFR nach 7, 90 und 365 Tagen verringert. Unsere Daten wiedersprechen nicht generell der Verwendung von ANS Nieren, legen jedoch eine sogfaeltige Auswahl der Empfaenger von ANS Nieren nahe

    X-ray Bright Active Galactic Nuclei in Massive Galaxy Clusters II: The Fraction of Galaxies Hosting Active Nuclei

    Full text link
    We present a measurement of the fraction of cluster galaxies hosting X-ray bright Active Galactic Nuclei (AGN) as a function of clustercentric distance scaled in units of r500r_{500}. Our analysis employs high quality Chandra X-ray and Subaru optical imaging for 42 massive X-ray selected galaxy cluster fields spanning the redshift range of 0.2<z<0.70.2 < z < 0.7. In total, our study involves 176 AGN with bright (R<23R <23) optical counterparts above a 0.5−8.00.5-8.0 keV flux limit of 10−14erg cm−2 s−110^{-14} \rm{erg} \ \rm{cm}^{-2} \ \rm{s}^{-1}. When excluding central dominant galaxies from the calculation, we measure a cluster-galaxy AGN fraction in the central regions of the clusters that is ∼3\sim 3 times lower that the field value. This fraction increases with clustercentric distance before becoming consistent with the field at ∼2.5r500\sim 2.5 r_{500}. Our data exhibit similar radial trends to those observed for star formation and optically selected AGN in cluster member galaxies, both of which are also suppressed near cluster centers to a comparable extent. These results strongly support the idea that X-ray AGN activity and strong star formation are linked through their common dependence on available reservoirs of cold gas.Comment: 9 Pages, 4 Figures, accepted for publication in MNRAS, please contact Steven Ehlert ([email protected]) with any querie

    Probing the extreme realm of AGN feedback in the massive galaxy cluster, RX J1532.9+3021

    Full text link
    We present a detailed Chandra, XMM-Newton, VLA and HST analysis of one of the strongest cool core clusters known, RX J1532.9+3021 (z=0.3613). Using new, deep 90 ks Chandra observations, we confirm the presence of a western X-ray cavity or bubble, and report on a newly discovered eastern X-ray cavity. The total mechanical power associated with these AGN-driven outflows is (22+/-9)*10^44 erg/s, and is sufficient to offset the cooling, indicating that AGN feedback still provides a viable solution to the cooling flow problem even in the strongest cool core clusters. Based on the distribution of the optical filaments, as well as a jet-like structure seen in the 325 MHz VLA radio map, we suggest that the cluster harbours older outflows along the north to south direction. The jet of the central AGN is therefore either precessing or sloshing-induced motions have caused the outflows to change directions. There are also hints of an X-ray depression to the north aligned with the 325 MHz jet-like structure, which might represent the highest redshift ghost cavity discovered to date. We further find evidence of a cold front (r=65kpc) that coincides with the outermost edge of the western X-ray cavity and the edge of the radio mini-halo. The common location of the cold front with the edge of the radio mini-halo supports the idea that the latter originates from electrons being reaccelerated due to sloshing induced turbulence. Alternatively, its coexistence with the edge of the X-ray cavity may be due to cool gas being dragged out by the outburst. We confirm that the central AGN is highly sub-Eddington and conclude that a >10^10M_Sun or a rapidly spinning black hole is favoured to explain both the radiative-inefficiency of the AGN and the powerful X-ray cavities.Comment: Accepted for publication to ApJ (minor corrections), 16 pages, 16 figures, 5 tables. Full resolution at http://www.stanford.edu/~juliehl/M1532

    X-ray bright active galactic nuclei in massive galaxy clusters III: New insights into the triggering mechanisms of cluster AGN

    Full text link
    We present the results of a new analysis of the X-ray selected Active Galactic Nuclei (AGN) population in the vicinity of 135 of the most massive galaxy clusters in the redshift range of 0.2 < z < 0.9 observed with Chandra. With a sample of more than 11,000 X-ray point sources, we are able to measure, for the first time, evidence for evolution in the cluster AGN population beyond the expected evolution of field AGN. Our analysis shows that overall number density of cluster AGN scales with the cluster mass as ∼M500−1.2\sim M_{500}^{-1.2}. There is no evidence for the overall number density of cluster member X-ray AGN depending on the cluster redshift in a manner different than field AGN, nor there is any evidence that the spatial distribution of cluster AGN (given in units of the cluster overdensity radius r_500) strongly depends on the cluster mass or redshift. The M−1.2±0.7M^{-1.2 \pm 0.7} scaling relation we measure is consistent with theoretical predictions of the galaxy merger rate in clusters, which is expected to scale with the cluster velocity dispersion, σ\sigma, as ∼σ−3 \sim \sigma^{-3} or ∼M−1\sim M^{-1}. This consistency suggests that AGN in clusters may be predominantly triggered by galaxy mergers, a result that is further corroborated by visual inspection of Hubble images for 23 spectroscopically confirmed cluster member AGN in our sample. A merger-driven scenario for the triggering of X-ray AGN is not strongly favored by studies of field galaxies, however, suggesting that different mechanisms may be primarily responsible for the triggering of cluster and field X-ray AGN.Comment: 21 Pages, 8 figures, 5 tables. Submitted to MNRAS. Comments are welcome, and please request Steven Ehlert for higher resolution figure

    Impaired M3 and enhanced M2 muscarinic receptor contractile function in a streptozotocin model of mouse diabetic urinary bladder

    Get PDF
    We investigated the contractile roles of M2 and M3 muscarinic receptors in urinary bladder from streptozotocin-treated mice. Wild-type and M2 muscarinic receptor knockout (M2 KO) mice were given a single injection of vehicle or streptozotocin (125 mg kg−1) 2–24 weeks prior to bladder assays. The effect of forskolin on contractions elicited to the muscarinic agonist, oxotremorine-M, was measured in isolated urinary bladder (intact or denuded of urothelium). Denuded urinary bladder from vehicle-treated wild-type and M2 KO mice exhibited similar contractile responses to oxotremorine-M, when contraction was normalized relative to that elicited by KCl (50 mM). Eight to 9 weeks after streptozotocin treatment, the EC50 value of oxotremorine-M increased 3.1-fold in urinary bladder from the M2 KO mouse (N = 5) compared to wild type (N = 6; P < 0.001). Analogous changes were observed in intact bladder. In denuded urinary bladder from vehicle-treated mice, forskolin (5 µM) caused a much greater inhibition of contraction in M2 KO bladder compared to wild type. Following streptozotocin treatment, this forskolin effect increased 1.6-fold (P = 0.032). At the 20- to 24-week time point, the forskolin effect increased 1.7-fold for denuded as well as intact bladders (P = 0.036, 0.01, respectively). Although streptozotocin treatment inhibits M3 receptor-mediated contraction in denuded urinary bladder, muscarinic contractile function is maintained in wild-type bladder by enhanced M2 contractile function. M2 receptor activation opposes forskolin-induced relaxation of the urinary bladder, and this M2 function is enhanced following streptozotocin treatment
    • …
    corecore