32 research outputs found

    Bitter gourd, Momordica charantia L., breeding lines differ in secondary metabolite content according to market type

    Get PDF
    Bitter gourd, Momordica charantia L., is an important commercial cucurbitaceous vegetable of enormous medicinal value in Asia because of its secondary metabolite content. We report here the characterization and evaluation of open-pollinated (OP) edible South Asian and Southeast Asian types of bitter gourd breeding lines, developed at the World Vegetable Center, for horticultural traits (11 OP) and secondary metabolites (10 OP) and their comparisons with commercial OP and F1 hybrid cultivars. Marketable yields of South Asian and Southeast Asian type breeding lines were comparable to the OP ‘BARI Karella 1’ and the hybrid ‘Benteng’, respectively.The bitter gourd cultivars and breeding lines included in this study exhibited specific patterns for five secondary metabolites (saponins, carotenoids, chlorophyll a and b, and vitamin C): in general the two cultivars and South Asian type breeding lines contained higher levels of secondary metabolites, e.g. carotenoids, than the Southeast Asian bitter gourd breeding lines.Some of these bitter gourd lines will be released to Asian home and school gardeners after conducting multi-location trials across Asia to improve vegetable consumption as a main task of bitter gourd breeding

    Duplicate detection of 2D-NMR Spectra

    No full text
    2D-Nuclear magnetic resonance (NMR) spectra are used in the (structural) analysis of small molecules. In contrast to 1D-NMR spectra, 2D-NMR spectra correlate the chemical shifts of 1H and 13C at the same time. A spectrum consists of several peaks in a two--dimensional space. The most important information of a peak is the location of its center, which captures the bonding relationships of hydrogen and carbon atoms. A spectrum contains much information about the chemical structure of a product, but in most cases the structure cannot be read off in a simple and straightforward manner. Structure elucidation involves a considerable amount (manual) efforts

    Duplicate detection of 2d-nmr spectra

    No full text
    2D-Nuclear magnetic resonance (NMR) spectra are used in the (structural) analysis of small molecules. In contrast to 1D-NMR spectra, 2D-NMR spectra correlate the chemical shifts of 1 H and 13 C at the same time. A spectrum consists of several peaks in a twodimensional space. The most important information of a peak is the location of its center, which captures the bonding relationships of hydrogen and carbon atoms. A spectrum contains much information about the chemical structure of a product, but in most cases the structure cannot be read off in a simple and straightforward manner. Structure elucidation involves a considerable amount (manual) efforts. Using high-field NMR spectrometers, many 2D-NMR spectra can be recorded in short time. So the common situation is that a lab or company has a repository of 2D-NMR spectra, partially annotated with the structural information. For the remaining spectra the structure in unknown. In case two research labs are collaborating, the repositories will be merged and annotations shared. We reduce that problem to the task of finding duplicates in a given set of 2D-NMR spectra. Therefore, we propose a simple but robust definition of 2D-NMR duplicates, which allows for small measurement errors. We give a quadratic algorithm for the problem, which can be implemented in SQL. Further, we analyze a more abstract class of heuristics, which are based on selecting particular peaks. Such a heuristic works as a filter step on the pairs of possible duplicates and allows false positives. We compare all methods with respect to their run time. Finally we discuss the effectiveness of the duplicate definition on real data.

    Fast approximate Duplicate Detection for 2D-NMR Spectra

    No full text
    Abstract. 2D-Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical method to elucidate the chemical structure of molecules. In contrast to 1D-NMR spectra, 2D-NMR spectra correlate the chemical shifts of 1 H and 13 C simultaneously. To curate or merge large spectra libraries a robust (and fast) duplicate detection is needed. We propose a definition of duplicates with the desired robustness properties mandatory for 2D-NMR experiments. A major gain in runtime performance wrt. previously proposed heuristics is achieved by mapping the spectra to simple discrete objects. We propose several appropriate data transformations for this task. In order to compensate for slight variations of the mapped spectra, we use appropriate hashing functions according to the locality sensitive hashing scheme, and identify duplicates by hashcollisions.

    Table6_Acute effects of moderate vs. vigorous endurance exercise on urinary metabolites in healthy, young, physically active men—A multi-platform metabolomics approach.DOCX

    No full text
    Introduction: Endurance exercise alters whole-body as well as skeletal muscle metabolism and physiology, leading to improvements in performance and health. However, biological mechanisms underlying the body’s adaptations to different endurance exercise protocols are not entirely understood.Methods: We applied a multi-platform metabolomics approach to identify urinary metabolites and associated metabolic pathways that distinguish the acute metabolic response to two endurance exercise interventions at distinct intensities. In our randomized crossover study, 16 healthy, young, and physically active men performed 30 min of continuous moderate exercise (CME) and continuous vigorous exercise (CVE). Urine was collected during three post-exercise sampling phases (U01/U02/U03: until 45/105/195 min post-exercise), providing detailed temporal information on the response of the urinary metabolome to CME and CVE. Also, fasting spot urine samples were collected pre-exercise (U00) and on the following day (U04). While untargeted two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) led to the detection of 608 spectral features, 44 metabolites were identified and quantified by targeted nuclear magnetic resonance (NMR) spectroscopy or liquid chromatography-mass spectrometry (LC-MS).Results: 104 urinary metabolites showed at least one significant difference for selected comparisons of sampling time points within or between exercise trials as well as a relevant median fold change >1.5 or 2.0 or Discussion: To conclude, this study provided first evidence of specific urinary metabolites as potential metabolic markers of endurance exercise intensity. Future studies are needed to validate our results and to examine whether acute metabolite changes in urine might also be partly reflective of mechanisms underlying the health- or performance-enhancing effects of endurance exercise, particularly if performed at high intensities.</p

    Image6_Acute effects of moderate vs. vigorous endurance exercise on urinary metabolites in healthy, young, physically active men—A multi-platform metabolomics approach.JPEG

    No full text
    Introduction: Endurance exercise alters whole-body as well as skeletal muscle metabolism and physiology, leading to improvements in performance and health. However, biological mechanisms underlying the body’s adaptations to different endurance exercise protocols are not entirely understood.Methods: We applied a multi-platform metabolomics approach to identify urinary metabolites and associated metabolic pathways that distinguish the acute metabolic response to two endurance exercise interventions at distinct intensities. In our randomized crossover study, 16 healthy, young, and physically active men performed 30 min of continuous moderate exercise (CME) and continuous vigorous exercise (CVE). Urine was collected during three post-exercise sampling phases (U01/U02/U03: until 45/105/195 min post-exercise), providing detailed temporal information on the response of the urinary metabolome to CME and CVE. Also, fasting spot urine samples were collected pre-exercise (U00) and on the following day (U04). While untargeted two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) led to the detection of 608 spectral features, 44 metabolites were identified and quantified by targeted nuclear magnetic resonance (NMR) spectroscopy or liquid chromatography-mass spectrometry (LC-MS).Results: 104 urinary metabolites showed at least one significant difference for selected comparisons of sampling time points within or between exercise trials as well as a relevant median fold change >1.5 or 2.0 or Discussion: To conclude, this study provided first evidence of specific urinary metabolites as potential metabolic markers of endurance exercise intensity. Future studies are needed to validate our results and to examine whether acute metabolite changes in urine might also be partly reflective of mechanisms underlying the health- or performance-enhancing effects of endurance exercise, particularly if performed at high intensities.</p
    corecore