11 research outputs found

    METHODOLOGY Open Access

    Get PDF
    The development and validation of an LC-MS/MS method for the determination of a new anti-malarial compound (TK900D) in human whole blood and its application to pharmacokinetic studies in mic

    The development and validation of an LC-MS/MS method for the determination of a new anti-malarial compound (TK900D) in human whole blood and its application to pharmacokinetic studies in mice

    Get PDF
    Abstract Background Malaria is one of the most lethal and life-threatening killer infectious diseases in the world, and account for the deaths of more than half a million people annually. Despite the remarkable achievement made in preventing and eradicating malaria, it still remains a threat to the public health and a burden to the global economy due to the emergence of multiple-drug resistant malaria parasites. Therefore, the need to develop new anti-malarial drugs is crucial. The chemistry department at the University of Cape Town synthesized a number of new CQ-like derivatives (TK-series), and evaluated them for in vitro activity against both CQ-sensitive and -resistant Plasmodium falciparum strains, and for general cytotoxicity against a Chinese Hamster Ovarian (CHO) mammalian cell line. The lead compounds from the TK-series were selected for a comprehensive pharmacokinetic (PK) evaluation in a mouse model. Methods A sensitive LC-MS/MS assay was developed for the quantitative determination of TK900D. Multiple reaction monitoring (MRM) in the positive ionization mode was used for detection. The analyte and the internal standard (TK900E) were isolated from blood samples by liquid-liquid extraction with ethyl acetate. Chromatographic separation was achieved with a PhenomenexÂź Kinetex C18 (100 × 2.0 mm id, 2.6 ÎŒm) analytical column, using a mixture of 0.1% formic acid and acetonitrile (50:50; v/v) as the mobile phase. The method was fully validated over concentrations that ranged from 3.910 to 1000 ng/ml, and used to evaluate the PK properties of the lead compounds in a mouse model. Results The assay was robust, with deviation not exceeding 11% for the intra- and inter-run precision and accuracy. Extraction recovery was consistent and more than 60%. PK evaluation showed that TK900D and TK900E have moderate oral bioavailability of 30.8% and 25.9%, respectively. The apparent half-life ranged between 4 to 6 h for TK900D and 3.6 to 4 h for TK900E. Conclusion The assay was sensitive and able to measure accurately low drug levels from a small sample volume (20 Όl). PK evaluation showed that the oral bioavailability was moderate. Therefore, from a PK perspective, the compounds look promising and can be taken further in the drug development process

    UCT943, a next generation Plasmodium falciparum PI4K inhibitor preclinical candidate for the treatment of malaria

    Get PDF
    The 2-aminopyridine MMV048 was the first drug candidate inhibiting; Plasmodium; phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant; Plasmodium falciparum; and; Plasmodium vivax; clinical isolates. Excellent; in vitro; antiplasmodial activity translated into high efficacy in; Plasmodium berghei; and humanized; P. falciparum; NOD-; scid IL-2R; Îł; null; mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate; in vivo; intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation; Plasmodium; PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Syntheses and in Vitro Antiplasmodial Activity of Aminoalkylated Chalcones and Analogues

    No full text
    A series of readily synthesized and inexpensive aminoalkylated chalcones and diarylpropane analogues (<b>1</b>–<b>55</b>) were synthesized and tested against chloroquinone-sensitive (D10 and NF54) and -resistant (Dd2 and K1) strains of <i>Plasmodium falciparum</i>. Hydrogenation of the enone to a diarylpropane moiety increased antiplasmodial bioactivity significantly. The influence of the structure of the amine moiety, A-ring substituents, propyl vs ethyl linker, and chloride salt formation on further enhancing antiplasmodial activity was investigated. Several compounds have IC<sub>50</sub> values similar to or better than chloroquine (CQ). The most active compound (<b>26</b>) had an IC<sub>50</sub> value of 0.01 ÎŒM. No signs of resistance were detected, as can be expected from compounds with structures unrelated to CQ and other currently used antimalarial drugs. Toxicity tests (in vitro CHO cell assay) gave high SI indices

    Identification of fast-acting 2,6-disubstituted imidazopyridines that are efficacious in the In Vivo humanized Plasmodium falciparum nodscidil2rgamma (null) mouse model of malaria

    No full text
    Optimization of a chemical series originating from whole-cell phenotypic screening against the human malaria parasite, Plasmodium falciparum, led to the identification of two promising 2,6-disubstituted imidazopyridine compounds, 43 and 74. These compounds exhibited potent activity against asexual blood stage parasites that, together with their in vitro absorption, distribution, metabolism, and excretion (ADME) properties, translated to in vivo efficacy with clearance of parasites in the PfSCID mouse model for malaria within 48 h of treatment

    Synthesis and in Vitro and in Vivo Pharmacological Evaluation of New 4‑Aminoquinoline-Based Compounds

    No full text
    A new class of 4-aminoquinolines was synthesized and evaluated in vitro for antiplasmodial activity against both the chloroquine-sensitive (3D7) and -resistant (K1 and W2) strains. The most active compounds <b>3c</b>–<b>3e</b> had acceptable cytotoxicity but showed strong inhibition toward a panel of cytochrome P450 enzymes in vitro. Pharmacokinetic studies on <b>3d</b> and <b>3e</b> in mice showed that they had moderate half-life (4–6 h) and low oral bioavailability. The front runner compound <b>3d</b> exhibited moderate inhibition of the malaria parasite on <i>P. berghei</i> infected mice following oral administration (5 mg/kg), achieving reduction of parasitemia population by 47% on day 7

    Identification of Fast-Acting 2,6-Disubstituted Imidazopyridines That Are Efficacious in the in Vivo Humanized <i>Plasmodium falciparum</i> NODscidIL2RÎł<sup><i>null</i></sup> Mouse Model of Malaria

    No full text
    Optimization of a chemical series originating from whole-cell phenotypic screening against the human malaria parasite, <i>Plasmodium falciparum</i>, led to the identification of two promising 2,6-disubstituted imidazopyridine compounds, <b>43</b> and <b>74</b>. These compounds exhibited potent activity against asexual blood stage parasites that, together with their in vitro absorption, distribution, metabolism, and excretion (ADME) properties, translated to in vivo efficacy with clearance of parasites in the <i>Pf</i>SCID mouse model for malaria within 48 h of treatment

    Identification of Fast-Acting 2,6-Disubstituted Imidazopyridines That Are Efficacious in the in Vivo Humanized <i>Plasmodium falciparum</i> NODscidIL2RÎł<sup><i>null</i></sup> Mouse Model of Malaria

    No full text
    Optimization of a chemical series originating from whole-cell phenotypic screening against the human malaria parasite, <i>Plasmodium falciparum</i>, led to the identification of two promising 2,6-disubstituted imidazopyridine compounds, <b>43</b> and <b>74</b>. These compounds exhibited potent activity against asexual blood stage parasites that, together with their in vitro absorption, distribution, metabolism, and excretion (ADME) properties, translated to in vivo efficacy with clearance of parasites in the <i>Pf</i>SCID mouse model for malaria within 48 h of treatment
    corecore