4,971 research outputs found

    Interaction between high-level and low-level image analysis for semantic video object extraction

    Get PDF
    Authors of articles published in EURASIP Journal on Advances in Signal Processing are the copyright holders of their articles and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate the article, according to the SpringerOpen copyright and license agreement (http://www.springeropen.com/authors/license)

    Free Rota-Baxter algebras and rooted trees

    Full text link
    A Rota-Baxter algebra, also known as a Baxter algebra, is an algebra with a linear operator satisfying a relation, called the Rota-Baxter relation, that generalizes the integration by parts formula. Most of the studies on Rota-Baxter algebras have been for commutative algebras. Two constructions of free commutative Rota-Baxter algebras were obtained by Rota and Cartier in the 1970s and a third one by Keigher and one of the authors in the 1990s in terms of mixable shuffles. Recently, noncommutative Rota-Baxter algebras have appeared both in physics in connection with the work of Connes and Kreimer on renormalization in perturbative quantum field theory, and in mathematics related to the work of Loday and Ronco on dendriform dialgebras and trialgebras. This paper uses rooted trees and forests to give explicit constructions of free noncommutative Rota--Baxter algebras on modules and sets. This highlights the combinatorial nature of Rota--Baxter algebras and facilitates their further study. As an application, we obtain the unitarization of Rota-Baxter algebras.Comment: 23 page

    Combinatorics of renormalization as matrix calculus

    Get PDF
    We give a simple presentation of the combinatorics of renormalization in perturbative quantum field theory in terms of triangular matrices. The prescription, that may be of calculational value, is derived from first principles, to wit, the ``Birkhoff decomposition'' in the Hopf-algebraic description of renormalization by Connes and Kreimer.Comment: 10 pages, revised version, typos corrected, to appear in Phys. Lett.

    Tuning electronic properties and contact type in van der Waals heterostructures of bilayer SnS and graphene

    Full text link
    Using first-principles calculations, we study the structural and electronic properties of the bilayer SnS/graphene, bilayer SnS/bilayer graphene (AA-stacked), bilayer SnS/bilayer graphene (AB-stacked) and monolayer SnS/graphene/monolayer SnS van der Waals (vdW) heterostructures. Electronic properties of all components of the vdW heterostructures are well preserved, which reflects the weakness of the vdW interaction. In the cases of bilayer SnS/graphene and bilayer SnS/bilayer graphene (AA-stacked), an Ohmic contact is formed which can be turned first into p-type and then into n-type Schottky contacts via application of an external electric field. Calculations show that an Ohmic contact is also formed at the interface of bilayer SnS/bilayer graphene (AB-stacked) heterostructure, but interestingly, by applying the perpendicular electric field a transition from semimetal/semiconductor contact to semiconductor/semiconductor one occurs which can enhance its optical properties. Alternatively, in the monolayer SnS/graphene/monolayer SnS vdW heterosructure, a p-type Schottky contact is established that changes into Ohmic contact under an applied electric field. Our results clearly indicate that the electronic properties of the vdW heterostructures can be tuned efficiently by external electric field, which is important in designing of new nanoelectronic devices.Comment: 12 pages, 11 figure

    Effect of Sintering Atmosphere on Phase Evolution of Hydroxyapatite Nanocomposite Powders

    Get PDF
    In the present work, pure hydroxyapatite, hydroxyapatite-20 wt% alumina and hydroxyapatite-20 wt% titanium mixtures were pressed and sintered in air, moist, and reduction atmospheres at 1200 C for 2 h. XRD investigations of sintered samples showed that, pure hydroxyapatite is stable in all three atmospheres. But, moist and reduction atmospheres were preferred to suppress the hydroxyapatite decomposition in hydroxyapatite -alumina and hydroxyapatite – titanium nanocomposites, respectively. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3494

    Lipids, Lipoproteins, and Age-Related Macular Degeneration

    Get PDF
    Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. While excellent treatment has emerged for neovascular disease, treatment for early AMD is lacking due to an incomplete understanding of the early molecular events. A prominent age-related change is the accumulation of neutral lipid in normal Bruch's membrane (BrM) throughout adulthood and also disease-related BrM accumulations called basal deposits and drusen. AMD lesion formation has thus been conceptualized as sharing mechanisms with atherosclerotic plaque formation, where low-density lipoprotein (LDL) retention within the arterial wall initiates a cascade of pathologic events. However, we do not yet understand how lipoproteins contribute to AMD. This paper explores how systemic and local production of lipoproteins might contribute to the pathogenesis of AMD

    Cast Shadow Recognition in Color Images

    Get PDF
    Shadows are often integral parts of natural scenes and their identification is an important task in image analysis. In this paper, we propose an algorithm for recognition of shadows cast by objects on the scene's background. The proposed approach is based on the use of color information by means of photometric invariant color transformations. The method is divided into two levels: first, object and shadow edges are extracted from the RGB components and only object edges from the invariant features; then, edges are filled and the obtained masks are combined to extract shadow regions. Simulation results show that the proposed algorithm is robust and efficient in detecting shadows within a set of assumptions on the scene that makes the method's applicability wider than that of state-of-the-art methods

    Error-Resilient Video Coding Performance Analysis of Motion JPEG 2000 and MPEG-4

    Get PDF
    The new Motion JPEG 2000 standard is providing with some compelling features. It is based on an intra-frame wavelet coding, which makes it very well suited for wireless applications. Indeed, the state-of-the-art wavelet coding scheme achieves very high coding efficiency. In addition, Motion JPEG 2000 is very resilient to transmission errors as frames are coded independently (intra coding). Furthermore, it requires low complexity and introduces minimal coding delay. Finally, it supports very efficient scalability. In this paper, we analyze the performance of Motion JPEG 2000 in error-prone transmission. We compare it to the well-known MPEG-4 video coding scheme, in terms of coding efficiency, error resilience and complexity. We present experimental results which show that Motion JPEG 2000 outperforms MPEG-4 in the presence of transmission errors

    MPEG-4 natural video coding - An overview

    Get PDF
    This paper describes the MPEG-4 standard, as defined in ISO/IEC 14496-2. The MPEG-4 visual standard is developed to provide users a new level of interaction with visual contents. It provides technologies to view, access and manipulate objects rather than pixels, with great error robustness at a large range of bit-rates. Application areas range from digital television, streaming video, to mobile multimedia and games. The MPEG-4 natural video standard consists of a collection of tools that support these application areas. The standard provides tools for shape coding, motion estimation and compensation, texture coding, error resilience, sprite coding and scalability. Conformance points in the form of object types, profiles and levels, provide the basis for interoperability. Shape coding can be performed in binary mode, where the shape of each object is described by a binary mask, or in gray scale mode, where the shape is described in a form similar to an alpha channel, allowing transparency, and reducing aliasing. Motion compensation is block based, with appropriate modifications for object boundaries. The block size can be 16×16, or 8×8, with half pixel resolution. MPEG-4 also provides a mode for overlapped motion compensation. Texture coding is based in 8×8 DCT, with appropriate modifications for object boundary blocks. Coefficient prediction is possible to improve coding efficiency. Static textures can be encoded using a wavelet transform. Error resilience is provided by resynchronization markers, data partitioning, header extension codes, and reversible variable length codes. Scalability is provided for both spatial and temporal resolution enhancement. MPEG-4 provides scalability on an object basis, with the restriction that the object shape has to be rectangular. MPEG-4 conformance points are defined at the Simple Profile, the Core Profile, and the Main Profile. Simple Profile and Core Profiles address typical scene sizes of QCIF and CIF size, with bit-rates of 64, 128, 384 and 2 Mbit/s. Main Profile addresses a typical scene sizes of CIF, ITU-R 601 and HD, with bit-rates at 2, 15 and 38.4 Mbit/s
    corecore