606 research outputs found

    Phytotoxic metabolites produced by Botryosphaeriaceae involved in grapevine trunk diseases

    Get PDF
    Fungi belonging to the Botryosphaeriaceae family are well known as cosmopolitan pathogens, saprophytes and endophytes and occur on a wide range of hosts including grapevine. More recently, a new species of Lasiodiplodia was isolated from declining grapevines in Sardinia (Italy). This still undescribed species showed to produce in liquid culture several phytotoxic secondary metabolites. In this communication the chemical and biological characterization of these bioactive secondary metabolites is discussed together with their role in the pathogenesis process

    Gulypyrones A and B and phomentrioloxins B and C produced by Diaporthe gulyae, a potential mycoherbicide for saffron thistle (Carthamus lanatus)

    Get PDF
    A virulent strain of Diaporthe gulyae, isolated from stem cankers of sunflower and known to be pathogenic to saffron thistle, has been shown to produce both known and previously undescribed metabolites when grown in either static liquid culture or a bioreactor. Together with phomentrioloxin, a phytotoxic geranylcyclohexenetriol recently isolated from a strain of Phomopsis sp., two new phytotoxic trisubstituted α-pyrones, named gulypyrones A and B (1 and 2), and two new 1,O- and 2,O-dehydro derivatives of phomentrioloxin, named phomentrioloxins B and C (3 and 4), were isolated from the liquid culture filtrates of D. gulyae. These four metabolites were characterized as 6-[(2S)2-hydroxy-1-methylpropyl]-4-methoxy-5-methylpyran-2-one (1), 6-[(1E)-3-hydroxy-1-methylpropenyl]- 4-methoxy-3-methylpyran-2-one (2), 4,6-dihydroxy-5-methoxy-2-(7-methyl-3-methyleneoct-6-en-1-ynyl)cyclohex-2-enone (3), and 2,5-dihydroxy-6-methoxy-3-(7-methyl-3-methyleneoct-6-en-1-ynyl)cyclohex-3-enone (4) using spectroscopic and chemical methods. The absolute configuration of the hydroxylated secondary carbon of the 2-hydroxy-1-methylpropyl side chain at C-6 of gulypyrone A was determined as S by applying a modified Mosher’s method. Other well-known metabolites were also isolated including 3-nitropropionic, succinic, and p-hydroxy- and p-methylbenzoic acids, p-hydroxybenzaldehyde, and nectriapyrone. When assayed using a 5 mM concentration on punctured leaf disks of weedy and crop plants, apart from 3-nitropropionic acid (the main metabolite responsible for the strong phytotoxicity of the culture filtrate), phomentrioloxin B caused small, but clear, necrotic spots on a number of plant species, whereas gulypyrone A caused leaf necrosis on Helianthus annuus plantlets. All other compounds were weakly active or inactive

    Phytotoxic metabolites produced by fungi involvedin cork oak decline

    Get PDF
    Diplodia corticola, anamorph of Botryosphaeria corticola Phillips, Alves et Luque, and Biscognauxia mediterranea (De Not.) O. Kuntze (= Hypoxylon mediterraneum) have often been associated with serious decline phenomena, which have been affecting the cork oak forest in Italy and other Mediterranean countries for several years. Diplodia corticola is widespread in Sardinian oak forests, and can affect plants of different ages, inducing symptoms which include dieback, cankers and vascular necrosis. These studies may provide information which could be useful for understanding the chemistry and the biology governing the relationship between these fungi and their hosts. Further studies should aim to also evaluate the ecological role of these substances

    Diplofuranones A and B, two further new 4-monosubstituted 2(3<i>H</i>)-dihydrofuranones produced by <i>Diplodia corticola</i>, a fungus pathogen of cork oak

    Get PDF
    Two new 4-monosubstituted 2(3H)-dihydrofuranones, named diplofuranones A and B, were isolated from liquid cultures of Diplodia corticola, a plant pathogenic fungus causing a canker disease of cork oak (Quercus suber L.). The same fungus also produces several metabolites such as the diplopyrone, the (3S,4R)-trans- and the (3R,4R)-cis-4-hydroxymellein, the sapinofuranone B and its (S,S)-enantiomer, the well known sphaeropsidins A-C, and the diplobifuranylones A and B. The diplofuranones A and B were characterised, using spectroscopic (essentially NMR and MS techniques) methods, as the 4-[(1E,3E)-5-hydroxyhexadienyl]butan-4-olide and its corresponding 3,4-dihydro side chain derivative. The stereochemistry of the stereogenic secondary hydroxylated carbon of the side chain of diplofuranone A was determined by application of Mosher’s method and proved to be R. Diplofuranone A tested at 0.2 mg mL-1 on non-host plant did not show phytotoxic activity

    Circularly polarized luminescence of natural products lycorine and narciclasine: role of excited-state intramolecular proton-transfer and test of pH sensitivity

    Get PDF
    : Circularly polarized luminescence (CPL) is increasingly gaining interest not only for its applicative potentialities but also for providing an understanding of the excited state properties of chiral molecules. However, applications of CPL are mainly in the field of materials science: special organic molecules and polymers, metal (lanthanide) complexes, and organic dyes are actively and intensely studied. So far natural compounds have not been investigated much. We fill the gap here by measuring circular dichroism (CD) and CPL of lycorine and narciclasine, the most abundant known alkaloid and isocarbostyril from Amaryllidaceae, which exhibit a large spectrum of biological activities and are promising anticancer compounds. Dual fluorescence detection in narciclasine led us to unveil an occurring excited-state intramolecular proton transfer (ESIPT) process, this mechanism well accounts for the Stokes shift and CPL spectra observed in narciclasine. The same molecule is interesting also as a pH chiroptical switch. Both in absorption and emission, lycorine and narciclasine are also studied computationally via density functional theory (DFT) calculations further shedding light on their properties

    Antifungal metabolites produced by <i>Trichoderma viride</i> against <i>Sclerotium rolfsii</i>

    Get PDF
    In this comunication we report our progress regarding the isolation and characterization of new antifungal metabolites from this strain of T. viride

    Computational Approaches and Use of Chiroptical Probes in the Absolute Configuration Assignment to Natural Products by ECD Spectroscopy: A 1,2,3-Trihydroxy-p-menthane as a Case Study

    Get PDF
    In this study, the computational analysis of electronic circular dichroism (ECD) spectra and the employment of biphenyl chiroptical probes were compared in the absolute configuration assignment of (-)-1 proportional to,2 proportional to,3 beta-trihydroxy-p-menthane (1), taken as a representative example of a UV-transparent chiral natural product. The usefulness of chiroptical probes in the configurational assignments of natural products and their complementarity to the computational protocols is herein highlighted. The biphenyl probe approach proves to be straightforward, reliable, and suitable for conformationally mobile and ECD silent compounds, not treatable by computational analysis of chiroptical data

    Bioactive and Structural Metabolites of Pseudomonas and Burkholderia Species Causal Agents of Cultivated Mushrooms Diseases1

    Get PDF
    Pseudomonas tolaasii, P. reactans and Burkholderia gladioli pv. agaricicola, are responsible of diseases on some species of cultivated mushrooms. The main bioactive metabolites produced by both Pseudomonas strains are the lipodepsipeptides (LDPs) tolaasin I and II and the so called White Line Inducing Principle (WLIP), respectively, LDPs which have been extensively studied for their role in the disease process and for their biological properties. In particular, their antimicrobial activity and the alteration of biological and model membranes (red blood cell and liposomes) was established. In the case of tolaasin I interaction with membranes was also related to the tridimensional structure in solution as determined by NMR combined with molecular dynamic calculation techniques. Recently, five news minor tolaasins, tolaasins A–E, were isolated from the culture filtrates of P. tolaasii and their chemical structure was determined by extensive use of NMR and MS spectroscopy. Furthermore, their antimicrobial activity was evaluated on target micro-organisms (fungi—including the cultivated mushrooms Agaricus bisporus, Lentinus edodes, and Pleurotus spp.—chromista, yeast and bacteria). The Gram positive bacteria resulted the most sensible and a significant structure-activity relationships was apparent. The isolation and structure determination of bioactive metabolites produced by B. gladioli pv. agaricicola are still in progress but preliminary results indicate their peptide nature. Furthermore, the exopolysaccharide (EPS) from the culture filtrates of B. gladioli pv. agaricicola, as well as the O-chain and lipid A, from the lipopolysaccharide (LPS) of the three bacteria, were isolated and the structures determined

    In Vitro Effects of Fungal Phytotoxins on Cancer Cell Viability: First Insight into Structure Activity Relationship of a Potent Metabolite of Cochliobolus australiensis Radicinin

    Get PDF
    Natural compounds have always represented an important source for new drugs. Although fungi represent one such viable source, to date, no fungal metabolite has been marketed as an anticancer drug. Based on our work with phytotoxins as potential chemical scaffolds and our recent findings involving three phytopathogenic fungi, i.e., Cochliobolus australiensis, Kalmusia variispora and Hymenoscyphus fraxineus, herein, we evaluate the in vitro anti-cancer activity of the metabolites of these fungi by MTT assays on three cancer cell models harboring various resistance levels to chemotherapeutic drugs. Radicinin, a phytotoxic dihydropyranopyran-4,5-dione produced by Cochliobolus australiensis, with great potential for the biocontrol of the invasive weed buffelgrass (Cenchrus ciliaris), showed significant anticancer activity in the micromolar range. Furthermore, a SAR study was carried out using radicinin, some natural analogues and hemisynthetic derivatives prepared by synthetic methods developed as part of work aimed at the potential application of these molecules as bioherbicides. This investigation opens new avenues for the design and synthesis of novel radicinin analogues as potential anticancer agents
    corecore