27 research outputs found
Nicotine in floral nectar pharmacologically influences bumblebee learning of floral features
D.B. was supported by a Marie Curie Intra European Fellowship. L.C. is supported by an ERC Advanced Grant and a Royal Society Wolfson Research Merit Award
Pyrethroids and Nectar Toxins Have Subtle Effects on the Motor Function, Grooming and Wing Fanning Behaviour of Honeybees (Apis mellifera)
Sodium channels, found ubiquitously in animal muscle cells and neurons, are one of the main target sites of many naturally-occurring, insecticidal plant compounds and agricultural pesticides. Pyrethroids, derived from compounds found only in the Asteraceae, are particularly toxic to insects and have been successfully used as pesticides including on flowering crops that are visited by pollinators. Pyrethrins, from which they were derived, occur naturally in the nectar of some flowering plant species. We know relatively little about how such compounds—i.e., compounds that target sodium channels—influence pollinators at low or sub-lethal doses. Here, we exposed individual adult forager honeybees to several compounds that bind to sodium channels to identify whether these compounds affect motor function. Using an assay previously developed to identify the effect of drugs and toxins on individual bees, we investigated how acute exposure to 10 ng doses (1 ppm) of the pyrethroid insecticides (cyfluthrin, tau-fluvalinate, allethrin and permethrin) and the nectar toxins (aconitine and grayanotoxin I) affected honeybee locomotion, grooming and wing fanning behaviour. Bees exposed to these compounds spent more time upside down and fanning their wings. They also had longer bouts of standing still. Bees exposed to the nectar toxin, aconitine, and the pyrethroid, allethrin, also spent less time grooming their antennae. We also found that the concentration of the nectar toxin, grayanotoxin I (GTX), fed to bees affected the time spent upside down (i.e., failure to perform the righting reflex). Our data show that low doses of pyrethroids and other nectar toxins that target sodium channels mainly influence motor function through their effect on the righting reflex of adult worker honeybees
Risks to pollinators and pollination from invasive alien species
Invasive alien species modify pollinator biodiversity and the services they provide that underpin ecosystem function and human well-being. Building on the Intergovernmental Science-Policy Platform for Biodiversity and Ecosystem Services (IPBES) global assessment of pollinators and pollination, we synthesize current understanding of invasive alien impacts on pollinators and pollination. Invasive alien species create risks and opportunities for pollinator nutrition, re-organize species interactions to affect native pollination and community stability, and spread and select for virulent diseases. Risks are complex but substantial, and depend greatly on the ecological function and evolutionary history of both the invader and the recipient ecosystem. We highlight evolutionary implications for pollination from invasive alien species, and identify future research directions, key messages and options for decision-making
Nectar chemistry modulates the impact of an invasive plant on native pollinators
Invasive species are considered a main driver of pollinator declines, yet the direct effects of invasive alien plants on pollinators are poorly understood. Abundant, invasive plant species can provide a copious nectar resource for native pollinators. However, the nectar of some plants contains secondary compounds, usually associated with defence against herbivores. The impacts of these compounds on pollinators are often unknown. We compared how consumption of grayanotoxin I and III, natural secondary compounds in the nectar of invasive Rhododendron ponticum L., affected three native bee species: a honeybee, (Apis mellifera L.), a solitary mining bee (Andrena carantonica, Pérez) and a bumblebee, (Bombus terrestris, L.). Survival of the solitary bee and the bumblebee species was not affected by either grayanotoxin, but honeybees were ∼20× more likely to die when fed solutions containing grayanotoxin I. Furthermore, solitary bees were deterred from feeding and exhibited malaise behaviours indicative of sublethal toxicity in response to consumption of grayanotoxin I. In contrast, grayanotoxins did not affect bumblebee survival or behaviour, even when bees were subjected to multiple stressors (parasite infection or food stress). Our experiments suggest that while R. ponticum provides abundant floral nectar, it is only available as a food resource to pollinators that tolerate grayanotoxins. Pollinators whose health is negatively affected by grayanotoxins may experience negative impacts from R. ponticum invasion directly (if they consume R. ponticum nectar) or indirectly (if native floral resources are replaced by R. ponticum). Our study makes a novel comparison of the effects of a natural nectar secondary compound on three pollinator species and clearly demonstrates drastic variation in the responses of different key pollinator taxa to a nectar toxin. Our findings are thus in congruence with literature demonstrating the varying effects of invasive plant chemistry on native foliar herbivores, and our work demonstrates that nectar chemistry should be taken into account when determining the impacts of plant invasion for native pollinators