22 research outputs found
Analytic estimates and topological properties of the weak stability boundary
The weak stability boundary (WSB) is the transition region of the phase space where the change from gravitational escape to ballistic capture occurs. Studies on this complicated region of chaotic motion aim to investigate its unique, fuel saving properties to enlarge the frontiers of low energy transfers. This âfuzzy stabilityâ region is characterized by highly sensitive motion, and any analysis of it has been carried out almost exclusively using numerical methods. On the contrary this paper presents, for the planar circular restricted 3 body problem (PCR3BP), 1) an analytic definition of the WSB which is coherent with the known algorithmic definitions; 2) a precise description of the topology of the WSB; 3) analytic estimates on the âstable regionâ (nearby the smaller primary) whose boundary is, by definition, the WSB
A special perturbation method in orbital dynamics
The special perturbation method considered in this paper combines simplicity of computer implementation, speed and precision, and can propagate the orbit of any material particle. The paper describes the evolution of some orbital
elements based in Euler parameters, which are constants in the unperturbed problem, but which evolve in the time scale imposed by the perturbation. The variation of parameters technique is used to develop expressions for the derivatives of seven elements for the general case, which includes any type of perturbation. These basic differential equations are slightly modified by introducing one additional equation for the time, reaching a total order of eight. The method was developed in the Grupo de DinĂĄmica de Tethers (GDT) of the UPM, as a tool for dynamic simulations of tethers. However, it can be used in any other field and with any kind of orbit and perturbation. It is free of singularities related to small inclination and/or eccentricity. The use of Euler parameters makes it robust. The perturbation forces are handled in a very simple way: the method requires their components in the orbital frame or in an inertial frame. A comparison with other schemes is performed in the paper to show the good performance of the method