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Abstract The special perturbation method considered in this paper combines
simplicity of computer implementation, speed and precision, and can propagate the
orbit of any material particle. The paper describes the evolution of some orbital
elements based in Euler parameters, which are constants in the unperturbed prob-
lem, but which evolve in the time scale imposed by the perturbation. The variation
of parameters technique is used to develop expressions for the derivatives of seven
elements for the general case, which includes any type of perturbation. These basic
differential equations are slightly modified by introducing one additional equation
for the time, reaching a total order of eight. The method was developed in the Grupo
de Dinámica de Tethers (GDT) of the UPM, as a tool for dynamic simulations of
tethers. However, it can be used in any other field and with any kind of orbit and
perturbation. It is free of singularities related to small inclination and/or eccentricity.
The use of Euler parameters makes it robust. The perturbation forces are handled in
a very simple way: the method requires their components in the orbital frame or in an
inertial frame. A comparison with other schemes is performed in the paper to show
the good performance of the method.
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1 Introduction

A special perturbation method determines the trajectory of celestial bodies by numer-
ically integrating the equations of motion. In order to solve a given special per-
turbation problem several points should be clarified in advance: (i) the type of
orbit, (ii) the operational requirements, (iii) the formulation of equations of motion,
(iv) the numerical integration procedure, and (v) the available computing facilities
(Roy 1988).

The method carried out in this paper involves a new formulation of equations
of motion. This formulation is appropriate for any kind of orbit (almost circular,
highly eccentric or parabolic–hyperbolic), and it can be used with different numerical
integration procedures (single-step or multi-step, constant-step or step-changing).

At present, the determination of satellite orbits involves a steadily increasing pre-
cision. Centimeter accuracy over weeks are becoming usual in several applications of
satellite constellations. Any special perturbation method facing these type of problems
should exhibit high efficiency and computing speed.

The method shown in this paper was born in the field of dynamical simulation
of tethers, where bead models are widely used. The cable is discretized using beads
distributed along its length; neighbor beads are linked through forces modeling the
elasticity and damping of the tether. The time evolution of the beads is obtained
numerically, considering the perturbation forces acting on the tether. Sometimes, the
simulation extends over several years. The complex interactions between the cable
and its spatial environment require to optimize the propagators that constitute the
core of the process. Bead models keep direct ties to physical effects involved in the
simulation and they are preferable when the dynamics is not well known. They can
be easily programmed and—for small number of beads—they are fast. The precision
can be readily improved by increasing the number of beads.

The method is not exclusive to the tether field; quite the opposite, it is completely
general and it can be used, practically, in any numerical problem of Celestial Mechan-
ics or Orbital Dynamics. Nevertheless, due to its origin, it does not give preferential
treatment to conservative perturbation forces which are the most usual in Celestial
Mechanics (aerodynamic drag or electrodynamic forces acting on electrodynamic
tethers are not conservative). This peculiarity does not hinder its use; in fact, it can be
readily used since the perturbation forces are managed through their components in
an inertial frame, which is practically the case of the most typical routines in Astrody-
namics. It is our intention to further study this subject in the future, trying to obtain
a specific formulation for the particular case of hamiltonian systems. For this type
of systems there are modern numerical integration procedures which are compatible
with the local symplectic geometry of their associated phase space. In our opinion,
our method used together some of these integrators would give rise to an excellent
numerical tool.

2 Equations for the particle

Let Ex1y1z1 be the inertial geocentric frame. Its origin is at the mass center of the
Earth, its Ex1 axis toward the first Aries Point (ϒ). The problem of determining the
time evolution of the position vector x = x(t) of a particle O with mass m in this
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reference is a 6-order differential problem. The equations governing its motion are:

m ẍ = −mµ
|x|3 x + Fp (1)

where x = −→
EO is the position vector of the particle and Fp is the perturbation force,

which is defined as the vector resultant of all the forces except the main term of the
gravitacional potential. The natural variables for the numerical integration of the sys-
tem (1) are x1, y1, z1, ẋ1, ẏ1 and ż1, that is, the cartesian coordinates of O and its time
derivatives, which define its dynamical state. The solution of this system of equations
has the form

x = x(t; x0, ẋ0)

where, without loss of generality, position (x0) and velocity (ẋ0) of O at t = 0 (initial
time) are taken as integration constants.

Let R = {O; i, j, k} be an orbital frame associated with the particle motion (see
Fig. 1). Its origin O is at the particle and its unit vectors (i, j, k) are defined as follows

– i, in the same direction and way of the position vector x
– k, contained in the osculating orbital plane defined by E, x and the velocity v = ẋ

of the particle, (in such a way that k · v ≥ 0)
– j = k × i, to fulfill the right-handed condition.

Thus, if the particle evolution is known the orbital reference evolution is known as
well, and it follows from the relations

i = x
|x| = x

R
, j = v × x

|v × x| = −h
h

, k = i × j (2)

where R(t) is the orbital distance R = |x| and h = x × v is the specific angular
momentum.

Let us consider a rigid body S in free motion relative to the frame Ex1y1z1. Its time
evolution is given by a 12-order problem: six variables associated with the dynamic
state of one of its points and six additional variables for its attitude. However, the time

Fig. 1 Orbital reference
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evolution of the above orbital frame R is governed by a 6-order system, equivalent
to the system (1) that governs the time evolution of the particle O. This is the basic
starting point of the special perturbation method proposed in this paper.

Let ω = pi + qj + rk be the angular velocity of the orbital frame R, and (ψ1, θ1,ϕ1)

three Euler angles providing its attitude relative to the frame Ex1y1z1. The time
evolution of R is given by the time evolution of R, (p, q, r) and (ψ1, θ1,ϕ1). Seemingly,
this is a 7th order problem but actually is of 6th order since, for the frame R, the third
component (r) of the angular velocity ω is always zero. This fundamental property
is deduced from the time derivatives of (i, j) unit vectors, that can be expressed in
two ways: (i) from time derivative of Eq. 2 and, (ii) from elemental properties of the
angular velocity of a rigid body.

di
dt

= v
R

− Ṙ
R2 x = ω × i = rj − qk

dj
dt

= ḣ
h2 h − 1

h
dh
dt

= ω × j = −ri + pk.

The components of the angular velocity of R are deduced by identifying the
corresponding values in both expressions

p = − 1
h

(
k · dh

dt

)
, q = − 1

R
(v · k), r = 1

R
(v · j) = 0

With the help of the angular momentum equation

dh
dt

= 1
m
(x × Fp)

which is readily deduced from Eq. (1), the components of ω take the form

p = − R
mh

(Fp · j), q = − h
R2 , r = 0

Thus, the third component (r) is always null independently of the perturbation force
acting on the particle.

Note that if the perturbation vanishes, (Fp = 0), the motion of the particle is
Keplerian: h is a constant vector and the law of areas R2θ̇ = h is satisfied. In such a
case, the components of the angular velocity are:

p = 0, q = −θ̇ , r = 0

where θ is the true anomaly.
In order to obtain the time-evolution equations for the orbital frame, the time

derivatives of the position vector x = Ri will be calculated

dx
dt

= Ṙi + Rω × i

d2x
dt2

= R̈i + R[ω̇ × i + ω × (ω × i)] + 2Ṙω × i

Equation 1 takes the form

R̈i + 2Ṙω × i + R{ω̇ × i + ω × (ω × i)} = − µ

R2 i + Fp

m
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and projecting on R, we obtain the following equations

R̈ − Rq2 + µ

R2 = + 1
m
(Fp · i) (3)

Rpq = + 1
m
(Fp · j) (4)

d
dt
(R2q) = − R

m
(Fp · k) (5)

which provide R(t), p(t), q(t) after the appropriate integration. From them, the
evolution of (i, j, k) can be obtained through the relations

di
dt

= ω × i = −qk (6)

dj
dt

= ω × j = +pk (7)

dk
dt

= ω × k = +qi − pj (8)

These results are well known and they have been obtained in several places. The
deduction given in (Deprit et al. 1994) is specially elegant.

2.1 State variables

The next step is to introduce non-dimensional variables and a more suitable set of
generalized coordinates. Then, Euler parameters will be introduced to simplify the
Eqs. 6–8.

Three characteristic magnitudes are introduced for length, time and mass; the
remaining magnitudes are derived from them. The characteristic values used to obtain
non-dimensional variables are summarized in Table 1, where R0 is the initial value of
R and ω0 is the angular frequency of the circular orbit at distance R0 from E. We use
the non-dimensional variables τ , r, P and Q defined by

τ = ω0t, R = R0r, q = ω0Q, p = ω0P (9)

Note that, from now on, r represents a non-dimensional distance and not the third
component of the angular velocity, since P and Q are the only non-dimensional
components different from zero of ω.

The Eqs. 3–5 will be rewritten using (r, u,ψ) as state variables; r has been defined
in (9); u and ψ are defined by:

u = dr
dτ

, ψ = −r2Q

Table 1 Characteristic values used to introduce non-dimensional variables

Length Time Mass Velocity Acceleration Force

R0 ω−1
0 =

√
R3

0/µ m R0ω0 R0ω
2
0 mR0ω

2
0
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When expressed in these state variables, the equations take the form:

dr
dτ

= u (10)

du
dτ

= ψ2

r3 − 1
r2 + (fp · i) (11)

dψ
dτ

= r (fp · k) (12)

where

fp = 1

mR0ω
2
0

Fp

is the non-dimensional value of the perturbation force. The non-dimensional compo-
nents (P, Q) of the angular velocity are given, in terms of the state variables, by the
additional relations:

P = − r
ψ
(fp · j) (13)

Q = −ψ
r2 (14)

Equation 12 shows thatψ is constant in the unperturbed problem (Fp = 0); its value
coincides with the constant in the law of areas in non-dimensional form (see Eq. 14),
that is, is the non-dimensional value of the modulus of the angular momentum vector.

2.2 Euler parameters

Two fundamental frames appear in the problem: (1) the inertial frame Ex1y1z1, whose
unit vectors are denoted by (i1, j1, k1), and (2) the orbital frame R, whose unit vectors
are denoted by (i, j, k). The relation between the two sets of unit vectors is given by
the equation1

[i j k] = [i1j1k1]Q(t)
Here Q is an special orthogonal matrix of third order which changes with time if the
particle is moving. Only three of the nine elements of the matrix are independent.
Usually the elements of Q are expressed in terms of three independent coordinates
(e.g., Euler angles). From the viewpoint of numerical integration this election has
a disadvantage: there is always a singular orientation where the matrix Q becomes
singular. If the numerical integration approaches the singularity the simulation is
jeopardized.

The minimum number of parameters needed to remove the singularity in the rep-
resentation of Q is four. This is the reason why Euler parameters (ε = (ε1, ε2, ε3), η)
are used in this paper. The Q matrix in terms of these parameters takes the form:

Q =
⎡
⎣ 1 − 2(ε2

2 + ε2
3), 2ε1ε2 − 2ηε3, 2ε1ε3 + 2ηε2

2ε1ε2 + 2ηε3, 1 − 2(ε2
1 + ε2

3), 2ε2ε3 − 2ηε1
2ε1ε3 − 2ηε2, 2ε3ε2 + 2ηε1, 1 − 2(ε2

1 + ε2
2)

⎤
⎦

1 The notation uses some matrices, such as [i1 j1 k1], which are no true matrices (matrix elements are
scalars but not vectors). In algebraic operations these pseudo-matrices obey the same algebra rules,
mutatis mutandi, than true matrices. This notation is easy to use and causes no error if everyone is
forewarned.
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Following Euler’s theorem, the transformation from the base (i1, j1, k1) into the base
(i, j, k) by means of Q represents a rotation of value φ around a spatial direction
defined by a unit vector a. Euler parameters define these geometric elements by
relations:

ε = a sin
φ

2
, η = cos

φ

2

If p and q are known, Eqs. 6–8 provide the time evolution of (i, j, k), unit vectors of
the orbital frame R. The time evolution of Euler parameters is given by the equations:

dε

dt
= 1

2
(ε × ω + ηω),

dη
dt

= −1
2
ε · ω

where all vectors have to be expressed in the orbital frame (i, j, k). The Eqs. 6–8 in
terms of non-dimensional variables take the form:

dε1

dτ
= +1

2
Pη − 1

2
Qε3 (15)

dε3

dτ
= −1

2
Pε2 + 1

2
Qε1 (16)

dε2

dτ
= +1

2
Pε3 + 1

2
Qη (17)

dη
dτ

= −1
2

Pε1 − 1
2

Qε2 (18)

where non-dimensional components (P, Q) of angular velocity ω are given by relations
(13–14) and depend on the perturbation force fp.

Since Euler parameters fulfil the condition

ε2
1 + ε2

2 + ε2
3 + η2 = 1 (19)

only three of the four Eqs. 15–18 are independent. Nevertheless, relation 19 is not used
to reduce the system order, but to check the quality of numerical solution obtained by
integrating Eqs. 15–18. Following (19), the renormalization of the quaternion could
be performed when needed.

2.3 Scheme of method generation

Equations 10–14 and 15–18 are the starting point of the process that leads to the
integration method of this paper. The scheme followed can be summarized in three
basic points:

• A fictitious time σ is introduced with a change of independent variable, similar
to the Sundmann transformation (Bond and Allman 1996). It is the first step in
regularization of the two-body problem (Stiefel and Scheifele 1971). The change
is defined by:

dσ
dτ

= −Q(σ ) ⇒ τ = −
σ∫

σ0

dσ
Q(σ )

=
σ∫

σ0

r2dσ
ψ

(20)

• Then, the analytical solution of the unperturbed problem is obtained

X = X(σ ; E) (21)
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Here X represents the state of the system and E the six integration constants (orbi-
tal elements in broad sense) involved in the general solution of the unperturbed
problem.

• The variation of constants method is used to solve the perturbed problem. Its solu-
tion is expressed in the form of (21), but considering orbital elements as unknown
functions of σ , E = E(σ ) (they are not constant now). This is equivalent to taking
(21) as a change of variables that expresses the state of the system X in terms of
orbital elements E. Such a change allows the equations of the perturbed problem
to be rewritten in terms of E as follows:

dE
dσ

= G(σ , E, fp), G(σ , E, 0) = 0

The right hand side of these equations cancels when the perturbation vanishes.
This basic scheme is developed below, first with Eqs. 10–14 and then with Eqs. 15–18.

3 First set of equations

The Eqs. 10–14 are rewritten taking σ , defined in (20), as independent variable. At
the same time, instead of r we take a new state variable

z = 1
r

The next set of equations is obtained:

dτ
dσ

= r2

ψ
→ dτ

dσ
= 1

z2ψ
dr
dσ

= u
r2

ψ
→ dz

dσ
= − u

ψ
du
dσ

= ψ

r
− 1
ψ

+ r2

ψ
(fp · i) → du

dσ
= zψ − 1

ψ
+ 1

z2ψ
(fp · i)

dψ
dσ

= r3

ψ
(fp · k) → dψ

dσ
= 1

z3ψ
(fp · k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(22)

The following relations, which give the components of angular velocity ω as functions
of the state of the system, must be added

P = − 1
zψ

(fp · j) (23)

Q = −ψz2 (24)

3.1 Unperturbed problem

In the unperturbed problem the Eqs. 22 can be analytically integrated to yield:

z = 1

ψ2
0

+ A cos σ + B sin σ (25)

u = ψ0 (A sin σ − B cos σ) (26)

ψ = ψ0 (27)
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where ψ0, A and B are integration constants depending on the initial conditions. This
solution corresponds to the classical Keplerian motion.

Now, the independent variable σ has a precise geometrical meaning: is the true
anomaly of the Keplerian orbit followed by the particle. In fact, this result can be
readily obtained by comparing the law of areas with the first of Eqs. 22

R2 dθ
dt

= C ↔ r2 dσ
dτ

= ψ0

As consequence: σ ≡ θ , and the initial condition for σ emerges immediately from this:
σ(τ = 0) = θ0; here θ0 is the initial true anomaly of the particle. This initial condition
is the same in both problems, perturbed and unperturbed, since it does not depend
on presence or absence of perturbation.

The introduction of the z = 1/r variable is due to a well known fact. In the two-body
problem, the second formula of Binet for central motions

γ = −C2

r2

{
d2

dθ2

(
1
r

)
+ 1

r

}

provides a linear differential equation in z which determines the trajectory of the
particle. This linearization is a basic goal of all the processes used to regularize
the equations of motion (Deprit et al. 1994).

The first of Eqs. 22 also provides, by means of an additional integration, the rela-
tion between the non-dimensional time τ and the true anomaly σ . Depending on the
type of Keplerian orbit (elliptic, parabolic or hyperbolic) it could take three different
forms. Nevertheless, such a relation is not interesting in this context.

3.2 Perturbed problem

Guided by the solution (25–27) of the unperturbed problem, a solution of the perturbed
problem is sought in the form

z = 1
ψ2(σ )

+ A(σ ) cos σ + B(σ ) sin σ

u = ψ(σ) (A(σ ) sin σ − B(σ ) cos σ)

ψ = ψ(σ)

Hereψ(σ), A(σ ) and B(σ ) are unknown functions of σ to be determined as part of the
solution. It is equivalent to considering Eqs. 25–27 as a change of variable that permits
to express the dynamical state of the system in terms of the generalized coordinates
ψ , A and B.

If these relations are introduced in Eqs. 22, the equations governing the evolution
of ψ(σ), A(σ ) and B(σ ) are obtained. Thereby we get the system

dψ
dσ

= 1
z3ψ

(fp · k) (28)

dA
dσ

= + sin σ

ψ2z2 (fp · i)+ 1
ψ

dψ
dσ

{cos σ(
1
ψ2 + z)− A} (29)

dB
dσ

= −cos σ

ψ2z2 (fp · i)+ 1
ψ

dψ
dσ

{sin σ(
1
ψ2 + z)− B} (30)
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dτ
dσ

= 1
z2ψ

(31)

whose second members include the perturbation force fp that is a function of the state
of the system. To calculate the right hand sides of these expressions, the following
relations must be considered

z = 1
ψ2(σ )

+ A(σ ) cos σ + B(σ ) sin σ (32)

dz
dσ

= −A(σ ) sin σ + B(σ ) cos σ (33)

which are satisfied at any time. Notice that, if fp vanishes in Eqs. 28–31, we recover
the unperturbed problem for which ψ , A and B take constant values.

4 Second set of equations

Taking σ as the independent variable, Eqs. 15–18 become

dε1

dσ
= −1

2
λ(σ )η + 1

2
ε3 (34)

dε3

dσ
= +1

2
λ(σ )ε2 − 1

2
ε1 (35)

dε2

dσ
= −1

2
λ(σ )ε3 − 1

2
η (36)

dη
dσ

= +1
2
λ(σ )ε1 + 1

2
ε2 (37)

where the function λ(σ ), defined by the relation

λ(σ ) = P
Q

= 1
ψ2z3 · (fp · j) (38)

is the ratio between the two components of angular velocity ω of the R frame. λ(σ )
can be singular if z = 0 or ψ = 0. The case z = 0 appears when the trajectory reaches
a point at the infinite (r = ∞); the case ψ = 0 appears when the angular momentum
of the particle vanishes, that is, if the velocity is contained into the local vertical and
the motion of the particle is rectilinear. None of these situations are presented in most
of the problems of orbital dynamics. Nevertheless, the hyperbolic case would lead
to a possible singularity when the particle approaches the asymptote, with λ taking
increasing positive values. However, this is a very strange situation because the out-of-
plane component of the perturbation, (fp · j), would be different from zero. Note that
when the particle moves away from the attraction center, usually the perturbations
goes to zero quickly and λ does not grow. The exception to this rule appears when
the particle approaches another attraction center, which becomes more and more
important; in such a case, the simulation requires to change from the original primary
to the new primary at a certain moment. In any case, an asymptotic solution could be
obtained in the limit λ → ∞, which permits to overcome this difficulty, but for the
sake of brevity it is not developed in these pages.



A special perturbation method in orbital dynamics

4.1 Unperturbed problem

In the unperturbed problem λ(σ ) ≡ 0, since fp = 0. Eqs. 34–37 take the form

dε1

dσ
= +1

2
ε3,

dε2

dσ
= −1

2
η

dε3

dσ
= −1

2
ε1,

dη
dσ

= +1
2
ε2

and—changing the order of Euler parameters slightly—they can be analytically
integrated to yield

⎧⎪⎪⎨
⎪⎪⎩

ε1
ε3
ε2
η

⎫⎪⎪⎬
⎪⎪⎭

= M(σ − σ0)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε0
1

ε0
3

ε0
2

η0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(39)

where M(ζ ) is an orthogonal 4-sized matrix, given by

M(ζ ) =

⎡
⎢⎢⎣

cos(ζ/2) sin(ζ/2) 0 0
− sin(ζ/2) cos(ζ/2) 0 0

0 0 cos(ζ/2) − sin(ζ/2)
0 0 sin(ζ/2) cos(ζ/2)

⎤
⎥⎥⎦

Note that M(0) ≡ I, the 4-sized identity matrix. In (39) σ0 represents the initial value
of σ and it coincides with the initial value θ0 of the true anomaly of the particle (in its
initial osculating orbit). Values ε0

1, ε0
3, ε0

2 and η0 are integration constants that define
the attitude of the orbital frame R at the initial time.

Note that the position of orbital frame R changes with time starting from an initial
position. The solution (39) relates the attitude of R in a generic time with the attitude
of the departure frame R0, namely, the frame R at the initial time (t = 0).

4.2 Perturbed problem

To approach the perturbed problem, it is appropriate to write Eqs. 34–37 in matricial
form

⎧⎪⎪⎨
⎪⎪⎩

dε1/dσ
dε3/dσ
dε2/dσ
dη/dσ

⎫⎪⎪⎬
⎪⎪⎭

= S(σ )

⎧⎪⎪⎨
⎪⎪⎩

ε1
ε3
ε2
η

⎫⎪⎪⎬
⎪⎪⎭

(40)

where matrix S(σ ) is

S(σ ) = 1
2

⎡
⎢⎢⎣

0 1 0 −λ(σ )
−1 0 λ(σ ) 0
0 −λ(σ ) 0 −1

λ(σ ) 0 1 0

⎤
⎥⎥⎦
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In the perturbed problem we seek a solution of Eq. 40 as follows

⎧⎪⎪⎨
⎪⎪⎩

ε1
ε3
ε2
η

⎫⎪⎪⎬
⎪⎪⎭

= M(σ − σ0)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε0
1(σ )

ε0
3(σ )

ε0
2(σ )

η0(σ )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(41)

where ε0
1(σ ), ε

0
3(σ ), ε

0
2(σ ) and η0(σ ) are functions of σ to be determined as part of the

solution. This is equivalent to considering Eq. 39 as a change of variables that permits
to express the dynamical state of the system in terms of generalized coordinates ε0

1,
ε0

3, ε0
2 and η0.

Introducing expressions (41) into Eq. 40, after some algebra, these take the form⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dε0
1(σ )/dσ

dε0
3(σ )/dσ

dε0
2(σ )/dσ

dη0(σ )/dσ

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= F(σ )

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε0
1(σ )

ε0
3(σ )

ε0
2(σ )

η0(σ )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

where the matrix

F(σ ) = MT(σ − σ0)

[
S(σ )M(σ − σ0)− dM

dσ
(σ − σ0)

]

can be written, in terms of the value � = σ − σ0, as

F(σ ) =λ(σ )
2

⎡
⎢⎢⎣

0 0 −sin� −cos�
0 0 cos� −sin�

sin� −cos� 0 0
cos� sin� 0 0

⎤
⎥⎥⎦

After some development, the equations take the form

dε0
1

dσ
= −λ(σ )

2

{
sin(σ − σ0)ε

0
2 + cos(σ − σ0)η

0
}

(42)

dε0
2

dσ
= +λ(σ )

2

{
sin(σ − σ0)ε

0
1 − cos(σ − σ0)ε

0
3

}
(43)

dε0
3

dσ
= +λ(σ )

2

{
cos(σ − σ0)ε

0
2 − sin(σ − σ0)η

0
}

(44)

dη0

dσ
= +λ(σ )

2

{
cos(σ − σ0)ε

0
1 + sin(σ − σ0)ε

0
3

}
(45)

and should be integrated with suitable initial conditions.
Note again that if perturbations vanish then λ ≡ 0 and the generalized coordinates

ε0
1, ε0

3, ε0
2 and η0 take constant values (the unperturbed problem results are recovered).

The value of λ only depends on the out-of-plane component of the perturbation (see
(38)); when this component is small, the value of λ will be small also, that is, λ << 1.
In such a case, the evolution of ε0

1, ε0
3, ε0

2 and η0 take place in a large time scale.
Note that there are three frames in the problem: the inertial frame Ex1y1z1, the

departure frame R0, whose attitude is defined by generalized coordinates ε0
1, ε0

3, ε0
2 and

η0, and finally, the orbital frame R located at the actual position of the particle, whose
attitude is defined by Euler parameters ε1, ε3, ε2 and η.
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In the unperturbed problem, the departure frame R0 is fixed in frame Ex1y1z1 (it
is also an inertial frame), but in the perturbed problem its position changes with time
(slowly if the perturbation acting on the particle is small). In both cases the attitude of
the orbital frame R (located at the actual position of the particle) is given by Eq. 41.
In the unperturbed problem R changes within an unique time scale (e.g., the orbital
period in an elliptical orbit). In contrast, the time evolution of R involves two time
scales in the perturbed problem. One of them defined by the osculating orbit (usually
a fast time scale); the other one defined by the perturbation (usually a slow time scale).
When the perturbation is small, the second is greater than the former. The relation
between both orbital frames, R0 and R, is clear: if the perturbation is removed at a
given epoch, the particle will follow the osculating (Keplerian) orbit from this time
forward. For this orbit, R0 is the departure frame at the epoch and R the orbital frame
at a generic later time.

It is important to understand the structure of this propagator, since in order to
calculate the perturbation (which determines the values of the right hand sides of
equations), the orbital frame R located at the particle needs to be used. The inte-
gration process, however, only provides the orbital frame R0. The transfer from one
frame to the other is carried out by Eq. 41.

All in all, the proposed method integrates Eqs. 28–31 and 42–45 starting from suit-
able initial conditions. Relations (32–33), (38), and (41)—satisfied at any time—must
be considered in the integration process and also in the computation of the right hand
sides of equations.

4.3 A final change of variables

A last change of variables leads to the final formulation:

q1 = ψA, q2 = ψB, q3 = 1
ψ

(46)

The equations of this change are inspired by the structure of governing equations,
where the derivatives of ψA and ψB appear in a natural form. Moreover, the total
energy of the system in the unperturbed problem adopts the simplified form

E = 1
2

mv2 − mµ
R

= mµ
2R0

{
q2

1 + q2
2 − q2

3

}

This change is not essential and it was initially guided by an erroneous argument.
It is associated with a transformation —in the phase space of the unperturbed
problem—from the original variables R, pR, θ and pθ (pR and pθ are conjugate
momenta) into the variables q1, q2, q3 and θ , given by equations

1
R

= q3 {q3 + q1 cos θ + q2 sin θ} 1
R0

θ = θ

pR = m
√
µ

R0
{q1 sin θ − q2 cos θ}

pθ = m
√
µR0

1
q3

At the very beginning we were looking for a canonical transformation that, preserving
the hamiltonian structure of equations, would improves the algorithm. Unfortunately,
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the above transformation is not canonical and does not bring any advantage in this
sense. However, it leads to equations that exhibit slightly better performances than
the original scheme; although the differences are not significant, it was finally adopted
because there is no reason against using it.

4.4 Summary of equations

The method proposed is based on the following set of equations

dτ
dσ

= + 1
q3s2 (47)

dq1

dσ
= + sin σ

q3s2 (fp · i)+ cos σ
s + q3

q3s3 (fp · k) (48)

dq2

dσ
= −cos σ

q3s2 (fp · i)+ sin σ
s + q3

q3s3 (fp · k) (49)

dq3

dσ
= − 1

s3 (fp · k) (50)

dε0
1

dσ
= −λ(σ )

2

{
sin(σ − σ0)ε

0
2 + cos(σ − σ0)η

0
}

(51)

dε0
2

dσ
= +λ(σ )

2

{
sin(σ − σ0)ε

0
1 − cos(σ − σ0)ε

0
3

}
(52)

dε0
3

dσ
= +λ(σ )

2

{
cos(σ − σ0)ε

0
2 − sin(σ − σ0)η

0
}

(53)

dη0

dσ
= +λ(σ )

2

{
cos(σ − σ0)ε

0
1 + sin(σ − σ0)ε

0
3

}
(54)

that should be integrated simultaneously with the relations needed to calculate the
right hand sides of equations

λ(σ ) = 1
q3s3 (fp · j) (55)

s = q3 + q1 cos σ + q2 sin σ (56)

z = 1
r

= q3 · s (57)

dr
dτ

= −ψ dz
dσ

= q1 sin σ − q2 cos σ (58)

⎧⎪⎪⎨
⎪⎪⎩

ε1
ε3
ε2
η

⎫⎪⎪⎬
⎪⎪⎭

= M(σ − σ0)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε0
1(σ )

ε0
3(σ )

ε0
2(σ )

η0(σ )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(59)

1 = (ε0
1)

2 + (ε0
2)

2 + (ε0
3)

2 + (η0)2 (60)

5 Advantages and drawbacks of the method

The proposed method presents advantages of diverse nature which shares with other
special perturbations methods. Some of them can be deduced directly from the
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theoretical formulation developed. Others can be deduced from different test car-
ried out to check the goodness of the method. The main advantages and drawbacks
found in the method are as follows

– Like the Cowell method, it has a unique formulation for the three types of orbits:
elliptic, parabolic and hyperbolic. So, the singularity found in the proximity of
parabolic motion when using different formulations for elliptic and hyperbolic
orbits disappears.

– Unlike the Cowell’s or Encke’s methods, the error propagation is not exponential,
(Bond and Allman 1996).

– It uses orbital elements as generalized coordinates, just as in the Lagrange’s Plane-
tary equations. As a consequence, the truncation error vanishes in the unperturbed
problem and is scaled by the perturbation itself in the perturbed one.

– Unlike Lagrange’s planetary equations, the method does not have singularities
for small inclination and/or small eccentricities. The attitude of the orbital plane
is determined by the Euler parameters which are free of singularities.

– The use of Euler parameters provides robustness and also permits easy auto-
correction. When the sum of the second member of Eq. 60 differs from 1 more
than a certain limit, Euler parameters can be normalized dividing by the module
of the associated quaternion.

– When compared with the Cowell method, our procedure requires an additional
operation, since it uses the components of perturbation forces in the orbital frame.
However, this extra calculation, a dot product for each component, does not jeop-
ardizes its performances as we shall show in the next section.

– When compared with more elaborated method (Kustaanheimo–Stiefel or
Sperling–Burdet, for example) the procedure exhibits a easier programming. In
any case, common perturbation models can be easily incorporated.

– A precise and fast simulator is obtained by using variable step routines with effec-
tive step control, as Runge–Kutta–Fehlberg or Dormand–Prince types. However,
routines with fixed step also can de used without reduction in performances.

– It is not necessary to solve Kepler’s equation in the elliptic case, nor the equivalent
for hyperbolic and parabolic cases, since time is one of the dependent variables
determined by the method itself.

– A drawback that can initially bewilder to the practitioner is the use of two differ-
ent sets of Euler parameters: one of them associated with the actual position of
the satellite, the other one related with the departure frame. The code is forced to
change from one to other, with the help of Eqs. 55–59; however, this difficulty is
not essential and it does not produces big problems.

Finally note that the method integrates a system of eight differential equations to
solve a sixth-order problem and this is a characteristic shared with other regulariza-
tion methods. Although increasing the order of the system in two unities can seem
troublesome, there is no disadvantage, as can be shown by regularization methods
and the results of the next section.

6 Checking the method

The method has been checked using the example 2b of the book by Stiefel & Scheifele,
pag. 122 of (Stiefel and Scheifele 1971); it deals with a satellite in an inclined (i = 30◦)



J. Peláez et al.

elliptical orbit of great eccentricity (e = 0.95) and affected by only two perturbation
forces: (1) the Earth oblateness and (2) the Lunar perturbation.

Parameters associated to Earth gravitation are

J2 = 1.08265 × 10−3, RE = 6371.22 km, µ = 398601.0 km3 s−2

and Lunar perturbation is modeled with the force

FPL = −mµL

{
R − ρ

|R − ρ|3 + ρ

ρ3

}

where R and ρ are the position vectors of satellite and Moon, respectively, in the
inertial geocentric frame and µL = 4902.66 km3 s−2. The Moon position is given by
the following ephemeris

ρ = ρ

{
sin�Lt i1 −

√
3

2
cos�Lt j1 − 1

2
cos�Lt k1

}

which correspond to an inclined circular orbit, and where ρ and �L take constants
values

ρ = 384400 km, �L = 2.665315780887 × 10−6 s−1

The problem is determining the satellite’s position after 50 revolutions
(288.12768941 mean solar days), starting from the initial conditions

(x1, y1, z1) = (0.0, −5888.9727, −3400.0) km

(ẋ1, ẏ1, ż1) = (10.691338, 0.0, 0.0) km s−1

which correspond to the perigee of the initial osculating orbit (at a distance
R = 6,800 km from the Earth’s center of mass). The most precise calculus of final
position (x1f , y1f , z1f ) given in the reference (Stiefel and Scheifele 1971)

(x1f , y1f , z1f ) = (−24219.0503, 227962.1064, 129753.4424) km (61)

was obtained by using a numerical integration scheme of 498 steps per revolution.
The most precise final position achieved in our group is

x1f = −24219.0501159 km

y1f = 227962.1063730 km

z1f = 129753.4424001 km.

This problem is also used in reference (Bond and Allman 1996) in order to com-
pare the performance of different methods. Ad hoc, the solution (61) given in (Stiefel
and Scheifele 1971) is adopted as exact and the error is defined as the distance (in
km) between the final position provided by each method and the exact one. All the
cases use variable step-size Runge–Kutta algorithms (we use here a Runge–Kutta–
Fehlberg 4(5) adapted from the RKF 4(5) taken from the (Press et al. 1992)). The
Table 2, taken from (Bond and Allman 1996), shows the results provided by different
methods. We added the last column, which summarizes the results provided by the
method presented in this paper.

Note that Cowell’s method (Bond and Horn 1973) requires a greater number of
steps per revolution (240) and, in spite of it, it is the less precise method, due to the
exponential error propagation (Bond and Allman 1996). The KS’s method (Bond
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Table 2 Comparison of special perturbation methods

Method Stiefel & Sperling & Kustaanheimo Cowell GDT
Scheifele Burdet & Stiefel

x (km) −24219.050 −24218.818 −24219.002 −24182.152 −24219.279
y (km) 227962.106 227961.915 227962.429 227943.989 227962.207
z (km) 129753.442 129753.343 129753.822 129744.270 129753.492
Steps/rev 500 62 62 240 62
Error 0.318 0.501 42.5 0.250

1974) is more accurate than the Cowell method but less than the Sperling–Burdet’s
method (Bond and Fraietta 1991). This last, considered as the most efficient in the
book (Bond and Allman 1996), gives an error of 318 m using 62 steps per revolu-
tion. The method carried out in these pages clearly competes with Sperling–Burdet’s
method, since it provides a smaller error, of 250 m, using 62 steps per revolution.

We would like to warn the reader about the accuracy of these calculations. It is
obvious that any one of the methods considered in Table 2 is able to provide more
accuracy if the integration is carried out using more steps per revolution. However,
in a comparison like the one developed in this section the important parameter is the
relative accuracy between the different methods for a given level of absolute accuracy.

A more detailed comparison with the Sperling–Burdet’s method has been carried
out. Both propagators have been coded and we have computed the former problem
with them for different step error tolerances. In this comparison the exact solution is
not the one given in the book (Stiefel and Scheifele 1971). Instead, we recalculated
the solution two times using both propagators with the maximum accuracy; we took
as exact solution the common part obtained in both calculations.

The computations have been done: (1) in the same computer (Intel Xeon 3056 MHz
microprocessor, 2 Gb RAM), (2) with the same compiler (Intel C++ 8.1.022), (3) with
the same integrating algorithm (Runge–Kutta–Fehlberg (RKF) 7(8) of variable step-
size better than the RKF 4(5) taken from the (Press et al. 1992)), and (4) in the
same computer conditions (processor load, etc). Moreover, to minimize the effect of
uncontrolled factors on the computation time we have repeated the former task 30
times and we have obtained the mean value of runtime.

Figure 2 shows the results. The mean computation runtime is plotted in ordinates
and the common logarithm of the norm of the error vector (− log(|�x̄|) in abscis-
sas. This last quantity is a measure of the quality of the solution: it is approximately
equivalent to the number of exact decimal digits of the solution plus one.

The plot shows better performances for the method carried out in these pages;
it seems to be quicker for the same precision, or equivalently, it seems to be more
accurate for identical computational time.

We believe these differences are mainly due to the lower order of our method.
But there are other reasons also: in the Sperling–Burdet’s method the calculation of
the “second members” of equations requires to process perturbation forces through
numerical treatments of some length; this also happens in similar methods based on
regularization techniques as the KS’s method. In our method however, forces hardly
require manipulation. Note that the right hand sides of equations only include their
components in the orbital frame R, which are obtained by simple scalar products.
Moreover, the simplicity of programming, joined to the clearness and the simplicity
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Fig. 2 Mean computation runtime versus quality parameter

of equations governing the evolution of Euler parameters, strengthens our conviction
in the method’s advantages.

A natural continuation of this work could be to validate this propagator. Precision
Orbits Ephemerides (POE) are available for some satellites as LAGEOS, ETALON,
GPS (Vallado 1997). The validation will require to determining the orbit of one of
these test satellites using the same perturbation forces as in the POE and then com-
paring with the known solution. Such a detailed comparison is beyond the scope of
this paper.

7 Similar formulations

An analysis of the available literature on the subject shows the existence of for-
mulations similar to the one exposed in this article, although in different context.
Particularly, almost identic formulations are used in the Department of Astronomy
of the Cairo University, collected in references (Mohammed Adel Sharaf et al. 1992;
Awad 1993, 1995). Likewise, similar schemes have been formulated in the Space
Mechanics Group of the Zaragoza University (Spain), (Palacios and Calvo 1996).

In any case, our method has clear advantages in general when it is compared to
other traditional methods. The reasons for this are no perfectly clear and are no simple
to describe. The reader interested in deepening the subject can encounter an extensive
analysis about regularization and linearization aspects in the reference (Deprit et al.
1994). These techniques had led the production of new perturbation methods in the
last decades.

8 Conclusions

The formulation of a special perturbation method have been exposed in detail. The
analysis of the structure of equations shows some of the intrinsic advantages of the
method; they are



A special perturbation method in orbital dynamics

– Unified formulation for the three kinds of orbits: elliptic, parabolic and hyperbolic
– Null truncation error in the unperturbed problem
– Truncation error scaled by perturbation in the perturbed problem
– It is not singular for small inclination nor small eccentricity
– There is no exponential error propagation
– Robustness and ease of programming.

It has been shown that the method exhibits indubitable advantages concerning
precision, when it is compared to classical methods (the Cowell’s or Encke’s meth-
ods), as well as concerning computation runtime compared to more sophisticated
methods (the KS or the Sperling–Burdet methods).

All these reasons make this perturbation method suitable to be used for general
orbital motion, specially when a large number of particles should be propagated. This
is the case, for example, of the tether simulators used in our group. They have to
follow the time evolution of a great number of particles (bead models) and they are
based in this method.

It should be notice that these advantages in runtime will be more pronounced in
problems where the calculations of the perturbation forces does not take a significant
percentage of the total runtime (per integration cycle). Obviously, when the most
expensive task (numerically speaking) is the calculation of the perturbation forces,
these differences become more and more damped.

Finally, along the paper we take the Earth as the primary attraction center. Obvi-
ously, this selection can be changed to any other attraction center (Sun, Jupiter, Moon,
etc) without difficulty.
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