62 research outputs found

    Exosome determinants of physiological aging and age-related neurodegenerative diseases

    Get PDF
    Aging is consistently reported as the most important independent risk factor for neurodegenerative diseases. As life expectancy has significantly increased during the last decades, neurodegenerative diseases became one of the most critical public health problem in our society. The most investigated neurodegenerative diseases during aging are Alzheimer disease (AD), Frontotemporal Dementia (FTD) and Parkinson disease (PD). The search for biomarkers has been focused so far on cerebrospinal fluid (CSF) and blood. Recently, exosomes emerged as novel biological source with increasing interest for age-related neurodegenerative disease biomarkers. Exosomes are tiny Extracellular vesicles (EVs; 30\u2013100 nm in size) released by all cell types which originate from the endosomal compartment. They constitute important vesicles for the release and transfer of multiple (signaling, toxic, and regulatory) molecules among cells. Initially considered with merely waste disposal function, instead exosomes have been recently recognized as fundamental mediators of intercellular communication. They can move from the site of release by diffusion and be retrieved in several body fluids, where they may dynamically reflect pathological changes of cells present in inaccessible sites such as the brain. Multiple evidence has implicated exosomes in age-associated neurodegenerative processes, which lead to cognitive impairment in later life. Critically, consolidated evidence indicates that pathological protein aggregates, including A\u3b2, tau, and \u3b1-synuclein are released from brain cells in association with exosomes. Importantly, exosomes act as vehicles between cells not only of proteins but also of nucleic acids [DNA, mRNA transcripts, miRNA, and non-coding RNAs (ncRNAs)] thus potentially influencing gene expression in target cells. In this framework, exosomes could contribute to elucidate the molecular mechanisms underneath neurodegenerative diseases and could represent a promising source of biomarkers. Despite the involvement of exosomes in age-associated neurodegeneration, the study of exosomes and their genetic cargo in physiological aging and in neurodegenerative diseases is still in its infancy. Here, we review, the current knowledge on protein and ncRNAs cargo of exosomes in normal aging and in age-related neurodegenerative diseases

    Alzheimer's Disease Diagnosis: Discrepancy between Clinical, Neuroimaging, and Cerebrospinal Fluid Biomarkers Criteria in an Italian Cohort of Geriatric Outpatients: A Retrospective Cross-sectional Study

    Get PDF
    Background: The role of cerebrospinal fluid (CSF) biomarkers, and neuroimaging in the diagnostic process of Alzheimer's disease (AD) is not clear, in particular in the older patients. Objective: The aim of this study was to compare the clinical diagnosis of AD with CSF biomarkers and with cerebrovascular damage at neuroimaging in a cohort of geriatric patients. Methods: Retrospective analysis of medical records of = 65-year-old patients with cognitive impairment referred to an Italian geriatric outpatient clinic, for whom the CSF concentration of amyloid-beta (A beta), total Tau (Tau), and phosphorylated Tau (p-Tau) was available. Clinical diagnosis (no dementia, possible and probable AD) was based on the following two sets of criteria: (1) the Diagnostic Statistical Manual of Mental Disorders (DSM-IV) plus the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA) and (2) the National Institute on Aging-Alzheimer's Association (NIA-AA). The Fazekas visual scale was applied when a magnetic resonance imaging scan was available. Results: We included 94 patients, mean age 77.7 years, mean Mini Mental State Examination score 23.9. The concordance (kappa coefficient) between the two sets of clinical criteria was 70%. The mean CSF concentration (pg/ ml) (+/- SD) of biomarkers was as follows: A beta 687 (+/- 318), Tau 492 (+/- 515), and p-Tau 63 (+/- 56). There was a trend for lower A beta and higher Tau levels from the no dementia to the probable AD group. Thepercentage of abnormal liquor according to the local cutoffs was still 15 and 21% in patients without AD based on the DSM-IV plus NINCDS- ADRDA or the NIA-AA criteria, respectively. The exclusion of patient in whom normotensive hydrocephalus was suspected did not change these findings. A total of 80% of patients had the neuroimaging report describing chronic cerebrovascular damage, while the Fazekas scale was positive in 45% of patients overall, in 1/2 of no dementia or possible AD patients, and in about 1/3 of probable AD patients, with no difference across ages. Conclusion: We confirmed the expected discrepancy between different approaches to the diagnosis of AD in a geriatric cohort of patients with cognitive impairment. Further research is needed to understand how to interpret this discrepancy and provide clinicians with practical guidelines

    Rs5848 Variant Influences GRN mRNA Levels in Brain and Peripheral Mononuclear Cells in Patients with Alzheimer\u2019s Disease

    Get PDF
    Mutations in the progranulin gene (GRN), causative for Frontotemporal Lobar Degeneration with ubiquitin-immunoreactive neuronal inclusions (FTLD-U), could also be associated with Alzheimer's disease (AD). The influence of GRN genetic variability on susceptibility to AD and on expression levels in a series of neuropathologically-confirmed AD patients as well as in peripheral mononuclear cells (PBMC) and in cells isolated from cerebrospinal fluid (CSF) was investigated. An association study of rs9897526 and rs5848 was carried out in an Italian population and in a replication population of European American patients and controls. None of the variants tested act as unequivocal susceptibility factor in both populations although rs9897526 anticipated the onset of the disease in the Italian population. GRN expression in the parietal lobe of AD cases showed a 0.76-fold decrease compared with controls (1.31 +/- 0.07 versus 1.73 +/- 0.12, P = 0.0025). Patients carrying the rs5848 TT genotype had the lowest GRN expression levels (0.96 +/- 0.12, P = 0.014). Despite no significant differences were found in the relative PBMC and CSF GRN expression in patients compared to controls, stratifying patients according to the presence of rs5848 T allele, a 0.57-fold decrease in GRN mRNA levels over C carriers was found in PBMC (1.22 +/- 0.23 versus 0.70 +/- 0.12, P = 0.04). Similarly to data obtained in brain samples, patients carrying the TT genotype showed the lowest GRN mRNA levels (TT = 0.46 +/- 0.14, CC = 1.22 +/- 0.23; P = 0.013). These data argue against a direct role of GRN as a susceptibility factor for sporadic AD but support a role of GRN as a disease-modifying gene, possibly contributing to the failure of neuronal survival

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

    Get PDF
    The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique\u2014Subtype and Stage Inference (SuStaIn)\u2014able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer\u2019s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 7 10 124 ) or temporal stage (p = 3.96 7 10 125 ). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine

    Alzheimer's Disease : From Pathogenesis to Disease-Modifying Approaches

    No full text
    The two major neuropathologic hallmarks of AD are extracellular amyloid beta (A) plaques and intracellular neurofibrillary tangles (NFTs). A number of additional pathogenic mechanisms, possibly overlapping with A plaques and NFTs formation, have been described, including inflammation, oxidative damage, iron dysregulation, and alterations in cholesterol metabolism. In this review, all of these mechanisms will be discussed and treatments that are under development to interfere with these pathogenic steps will be presented. A primary goal of work in this area is identification of novel compounds that can block the course of the disease in early phases. For this reason they are currently termed "disease modifying" drugs. These drugs are designed to modify pathological steps leading to AD, thus acting on the evolution and progression of the disease. Some of these molecules are undergoing clinical testing whereas others are in preclinical phases of development. Several approaches have been considered, including mainly A beta deposition interference by anti-A aggregation agents, vaccination, gamma-secretase inhibition or selective A beta 42-lowering agents (SALAs), tau deposition interference by methyl thioninium chloride (MTC), and methods for reduction of inflammation and oxidative damage

    Inflammation and oxidative damage in Alzheimer's disease : friend or foe?

    Get PDF
    The two major neuropathologic hallmarks of AD are extracellular Amyloid beta plaques and intracellular neurofibrillary tangles. A number of additional pathogenic mechanisms have been described, including inflammation and oxidative damage. Regarding inflammation, several cytokines and chemokines have been detected both immunohistochemically and in Cerebrospinal Fluid from patients. Some of them, including Tumor Necrosis Factor-alpha, Interferon-gamma-inducible Protein-10, Monocyte Chemotactic Protein-1 and Interleukin-8, are increased in AD and in Mild Cognitive Impairment, considered the prodromal stage of AD, suggesting that these modifications occur very early during the development of the disease, possibly explaining the failure of trials with anti-inflammatory agents in patients with severe AD. Further evidence suggests that cytokines and chemokines could play a role in other neurodegenerative disorders. These disorders are considered multifactorial diseases, and genetic factors influence pathological events and contribute to change the disease phenotype from patient to patient. Gene polymorphisms in crucial molecules, including cytokines, chemokines and molecules related to oxidative stress, may act as susceptibility factors, or may operate as regulatory factors, modulating the severity of pathogenic processes

    Genetics and neurobiology of frontotemporal lobar degeneration

    No full text
    Frontotemporal dementia (FTD) is characterised by brain intracellular deposition of abnormally phosphorylated tau protein, considered responsible for neuronal death. Several familial cases with different mutations in the tau encoding gene (MAPT), located on chromosome 17, have been described. Besides, in a Danish family, the genetic defect has been associated to chromosome 3. Although many FTD families exhibit known mutations, in some cases none of them occur. Recent findings demonstrate an increased intrathecal production of both pro- and anti-inflammatory cytokines in sporadic FTD patients. Besides, increased cerebrospinal fluid monocyte chemotactic protein-1 and interleukin-8 levels have been observed in FTD, whereas interferon-gamma-inducible protein-10 levels were similar to controls
    • 

    corecore