37,663 research outputs found

    Localized and extended states in a disordered trap

    Full text link
    We study Anderson localization in a disordered potential combined with an inhomogeneous trap. We show that the spectrum displays both localized and extended states, which coexist at intermediate energies. In the region of coexistence, we find that the extended states result from confinement by the trap and are weakly affected by the disorder. Conversely, the localized states correspond to eigenstates of the disordered potential, which are only affected by the trap via an inhomogeneous energy shift. These results are relevant to disordered quantum gases and we propose a realistic scheme to observe the coexistence of localized and extended states in these systems.Comment: Published versio

    Strategic Project Organizing

    Get PDF
    Strategic Project Organizing takes a unique approach to project management that places emphasis on the strategic and organizational aspects of projects and their leadership. Structured around the Three Domains model, it covers all the fundamental project management concepts, whilst guiding the reader through the organizational challenges of enabling positive change. Through the lens of strategic leadership, this text equips students to know how to respond proactively to threats, as well as seize opportunities, in order to advantageously change the socio-economic environment in an organization's favour. The text also helps students to understand the tools and techniques adopted during the process of organizational transformation. All chapters offer review and discussion-based questions to encourage critical thinking; as well as case vignettes and a longer, end-of-chapter case study to help students apply theory to practice. Real life projects featured in the case studies include the Eden Project, the Thames Tideway Tunnel and the Berlin Brandenburg Airport

    Cosmological evolution of warm dark matter fluctuations II: Solution from small to large scales and keV sterile neutrinos

    Full text link
    We solve the cosmological evolution of warm dark matter (WDM) density fluctuations with the Volterra integral equations of paper I. In the absence of neutrinos, the anisotropic stress vanishes and the Volterra equations reduce to a single integral equation. We solve numerically this equation both for DM fermions decoupling at equilibrium and DM sterile neutrinos decoupling out of equilibrium. We give the exact analytic solution for the density fluctuations and gravitational potential at zero wavenumber. We compute the density contrast as a function of the scale factor a for a wide range of wavenumbers k. At fixed a, the density contrast grows with k for k k_c, (k_c ~ 1.6/Mpc). The density contrast depends on k and a mainly through the product k a exhibiting a self-similar behavior. Our numerical density contrast for small k gently approaches our analytic solution for k = 0. For fixed k < 1/(60 kpc), the density contrast generically grows with a while for k > 1/(60 kpc) it exhibits oscillations since the RD era which become stronger as k grows. We compute the transfer function of the density contrast for thermal fermions and for sterile neutrinos in: a) the Dodelson-Widrow (DW) model and b) in a model with sterile neutrinos produced by a scalar particle decay. The transfer function grows with k for small k and then decreases after reaching a maximum at k = k_c reflecting the time evolution of the density contrast. The integral kernels in the Volterra equations are nonlocal in time and their falloff determine the memory of the past evolution since decoupling. This falloff is faster when DM decouples at equilibrium than when it decouples out of equilibrium. Although neutrinos and photons can be neglected in the MD era, they contribute in the MD era through their memory from the RD era.Comment: 27 pages, 6 figures. To appear in Phys Rev

    An investigation into the perspectives of providers and learners on MOOC accessibility

    Get PDF
    An effective open eLearning environment should consider the target learner’s abilities, learning goals, where learning takes place, and which specific device(s) the learner uses. MOOC platforms struggle to take these factors into account and typically are not accessible, inhibiting access to environments that are intended to be open to all. A series of research initiatives are described that are intended to benefit MOOC providers in achieving greater accessibility and disabled learners to improve their lifelong learning and re-skilling. In this paper, we first outline the rationale, the research questions, and the methodology. The research approach includes interviews, online surveys and a MOOC accessibility audit; we also include factors such the risk management of the research programme and ethical considerations when conducting research with vulnerable learners. Preliminary results are presented from interviews with providers and experts and from analysis of surveys of learners. Finally, we outline the future research opportunities. This paper is framed within the context of the Doctoral Consortium organised at the TEEM'17 conference

    How can Multi-Professional Education Support Better Stewardship?

    Get PDF
    Antimicrobial stewardship is widely accepted as an efficient strategy to combat the growing threat of antimicrobial resistance. Education is one of the cornerstones of successful antimicrobial stewardship programs. There is also general agreement that antimicrobial stewardship is a team effort that must involve the whole continuum of healthcare workers. Providing adequate education for all different professionals although challenging is deemed crucial to achieve good results. This paper reviews the different strategies available to educate the multiple healthcare workers, discusses how education can improve antimicrobial stewardship programs and outlines some of the challenges faced and research gaps that need to be addressed in order to improve education in this field

    Fuzzy Control Strategy for an Anaerobic Wastewater Treatment Process

    Get PDF
    In this paper, a fuzzy control strategy (FCS) for an anaerobic wastewater treatment process is proposed in order to reject large disturbances on input substrate allowing a high methane production. This strategy is composed of: i) a state observer, which is based on a principal components analysis (PCA) and Takagi-Sugeno (TS) algorithm; it is designed to estimate variables hard to measure: biomass and substrate, ii) proportional-integral (PI) controllers based on a combination of the L/A(logarithm/antilogarithm) and fuzzy approaches; these controllers have variable gains and are designed to regulate bicarbonate in the reactor by two control actions: a base supplying (binc) and dilution rate (D) changes, iii) a TS supervisor which detects the process state, selects and applies the most adequate control action, allowing a smooth switching between open loop and closed loop. Applicability of the proposed structure in a completely stirred tank reactor (CSTR) is illustrated via simulations. The obtained results show that the process works in open loop in presence of small disturbances. For large disturbances, the supervisor allows the control actions to be applied avoiding washout; after that, the process returns to open loop operation. In general, the FCS improves the performances of the anaerobic process and is feasible for application in real processes, since the control scheme shows a good compromise between efficiency and complexity

    Current profiles and AC losses of a superconducting strip with elliptic cross-section in perpendicular magnetic field

    Full text link
    The case of a hard type II superconductor in the form of strip with elliptic cross-section when placed in transverse magnetic field is studied. We approach the problem in two steps, both based on the critical-state model. First we calculate numerically the penetrated current profiles that ensure complete shielding in the interior, without assuming an a priori form for the profiles. In the second step we introduce an analytical approximation that asumes that the current profiles are ellipses. Expressions linking the sample magnetization to the applied field are derived covering the whole range of applied fields. The theoretical predictions are tested by the comparison with experimental data for the imaginary part of AC susceptibility.Comment: 12 pages; 3 figure

    Quantum corrections to the inflaton potential and the power spectra from superhorizon modes and trace anomalies

    Full text link
    We obtain the effective inflaton potential during slow roll inflation by including the one loop quantum corrections to the energy momentum tensor from scalar curvature and tensor perturbations as well as quantum fluctuations from light scalars and light Dirac fermions generically coupled to the inflaton. During slow roll inflation there is a clean and unambiguous separation between superhorizon and subhorizon contributions to the energy momentum tensor. The superhorizon part is determined by the curvature perturbations and scalar field fluctuations: both feature infrared enhancements as the inverse of a combination of slow roll parameters which measure the departure from scale invariance in each case.Fermions and gravitons do not exhibit infrared divergences. The subhorizon part is completely specified by the trace anomaly of the fields with different spins and is solely determined by the space-time geometry. The one-loop quantum corrections to the amplitude of curvature and tensor perturbations are obtained to leading order in slow-roll and in the (H/M_PL)^2 expansion. This study provides a complete assessment of the backreaction problem up to one loop including bosonic and fermionic degrees of freedom. The result validates the effective field theory description of inflation and confirms the robustness of the inflationary paradigm to quantum fluctuations. Quantum corrections to the power spectra are expressed in terms of the CMB observables:n_s, r and dn_s/dln k. Trace anomalies (especially the graviton part) dominate these quantum corrections in a definite direction: they enhance the scalar curvature fluctuations and reduce the tensor fluctuations.Comment: 18 pages, no figure
    corecore