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In this paper, a fuzzy control strategy (FCS) for an anaerobic wastewater treatment
process is proposed in order to reject large disturbances on input substrate allowing a
high methane production. This strategy is composed of: i) a state observer, which is
based on a principal components analysis (PCA) and Takagi-Sugeno (TS) algorithm; it is
designed to estimate variables hard to measure: biomass and substrate, ii) propor-
tional-integral (PI) controllers based on a combination of the L/A (logarithm/antiloga-
rithm) and fuzzy approaches; these controllers have variable gains and are designed to
regulate bicarbonate in the reactor by two control actions: a base supplying (binc) and di-
lution rate (D) changes, iii) a TS supervisor which detects the process state, selects and
applies the most adequate control action, allowing a smooth switching between open
loop and closed loop. Applicability of the proposed structure in a completely stirred tank
reactor (CSTR) is illustrated via simulations. The obtained results show that the process
works in open loop in presence of small disturbances. For large disturbances, the super-
visor allows the control actions to be applied avoiding washout; after that, the process re-
turns to open loop operation. In general, the FCS improves the performances of the an-
aerobic process and is feasible for application in real processes, since the control scheme
shows a good compromise between efficiency and complexity.
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Introduction

Among the main challenges imposed by anaer-
obic digestion, there are its sensitivity to changes
on operation conditions, process parameters uncer-
tainty, and high non-linear dynamics. Several tech-
niques have been already implemented in order to
overcome these problems. Linear approaches1,2 are
efficient around local operating points; however,
they are unreliable for major variations in operating
conditions. Linearizing feedback control3,4 consid-
ers process non-linearities and improves process
performances but a good knowledge of the model
structure is required. Robust control5,6 deals with
controllers allowing adequate performance inde-
pendently of changes in the process dynamics; an
inconvenience of this approach can be the necessity
to predefine operation intervals with uncertain
bounds. Adaptive control approaches7–9 allow the
controller adaptation to reduce the effect due to pa-
rameter variations and to uncertainties, but a good
knowledge of process structure is required, which
cannot be guaranteed. Additionally, linearizing, ro-

bust and adaptive approaches often present com-
plex structures difficult to implement. Intelligent
control (neural nets, fuzzy logic and hybrid
schemes) is emerging as an adequate alternative to
control anaerobic wastewater treatment, with
important results reported in different publica-
tions;10–13 however, frequently, many parameters
must be tuned empirically, which can be a hard
task. Other interesting approaches are PID based
schemes, which allow the process to reach good
performances in substrate and alkalinity regulation;
since its operation range is conditioned by process
non-linearities, PID improvement or combination
with other control approaches is an active research
topic.14,15 The L/A approach16–17 allows the control-
ler to take into account process positivity constraints
by means of logarithmic and antilogarithmic trans-
formations. Other alternatives for anaerobic waste-
water treatment, as integrated control strategies,18,19

improve process performances by increasing meth-
ane production and avoiding washout; however, an
oscillatory behavior is produced due to switching
between control laws.

Considering all the above, the first contribution
of this paper is the combination of PI L/A and fuzzy
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PI minimal20,21 approaches; this new fuzzy PI L/A is
able to modify on-line its gains as a function of the
operating conditions in order to enlarge the control-
ler operating range. The second contribution is a
novel application: the synthesis of a fuzzy control
structure for anaerobic wastewater treatment plants,
which combines different control actions to avoid
washout in the presence of large disturbances on
substrate input and allowing in consequence a high
methane production. A completely stirred tank reac-
tor (CSTR) was considered in order to validate the
proposed strategy.

Anaerobic digestion preliminaries

Process description

Anaerobic digestion degrades complex mole-
cules by anaerobic bacteria through four successive
stages (hydrolysis, acidogenesis, acetogenesis and
methanogenesis). The one considered in this paper
is a synthetic substrate similar to paper mill
effluents, composed of corn starch, maltose, glu-
cose, lactic acid, acetic acid, propionic acid, ammo-
nium chloride, potassium hydrogen-phosphate, iron
III chloride, cobalt chloride, nickel nitrate, calcium
chloride and magnesium sulfate; the exact composi-
tion can be found in the corresponding reference.22

The substrate organic components are classified as
equivalent glucose [S1] and equivalent acetate [S2].
The first one is assumed to model complex mole-
cules, and the second represents molecules which
are transformed directly in acetic acid. Biomass is
also classified in two types noted [X1] and [X2];
[X1] represents the bacteria populations, which
transform equivalent glucose substrates, and [X2]
stands for bacteria degrading equivalent acetate
substrates. This classification allows the process to
be represented by only two stages: the methano-
genesis, which is the limiting one, and a prelimi-
nary stage. Thus, a mathematical model of the pro-
cess is deduced as follows. On one side, the
physico-chemical phenomena are modelled by a set
of five algebraic equations, which represent the
chemical acid-base equilibrium and the conserva-
tion of mass. On the other side, the biological phe-
nomena and electroneutrality are modelled by a set
of six ordinary differential equations, which repre-
sent the dynamic part of the process. Finally, the
gaseous phase (CH4 and CO2) is considered as the
model output. The model is formulated as:
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where the different symbols are defined as follows:
[HAc] non-ionized acetic acid (mol dm–3), [Ac–]
ionized acetic acid (mol dm–3), [CO2]d dissolved
carbon dioxide (mol dm–3), [H�] ionized hydrogen,
[HCO3

�] bicarbonate (mol dm–3), [IC] inorganic car-
bon (mol dm–3), BZ� the total of cations (mol dm–3),
[S1]in the fast degradable substrate input (mol dm

–3),
[S2]in the slow degradable substrate input (mol dm

–3),
[IC]in the inorganic carbon input (mol dm

–3), [BZ�]in
the input cations (mol dm–3), D the dilution rate
(h–1), FCH4 methane flow rate (mol h–1) and FCO2
carbon dioxide flow rate (mol h–1).

The effect of pH is included in the model by
using Haldane growth rates as a function of [HAc]
which is directly influenced by this parameter.
Besides, Haldane equation allows saturation and
inhibition to be considered by means of constants
Ks (mol dm

–3) and Ki (mol dm
–3), respectively. The

specific growth rate for [X2] is calculated as:

�
�

2

2

2

2

2

�

� �

max [ ]

[ ]
[ ]

HAc

HAc
HAc

s
i

K
K

(3)

The parameters for this model were experimen-
tally identified23 and updated,24 considering a CSTR
with a nominal volume V � 5 dm3. Besides, for a
real prototype the hydraulic residence time distribu-
tion (HRTD) has important effects over the sub-
strate degradation as shown by different au-
thors.25,26 In the present publication, a hydraulic res-
idence time equal to 12.5 h is considered since the
input flow rate is Q � 0.4 dm3 h–1; the respective
HRTD corresponds to an ideal CSTR.

Indeed, there exist more complete models for
anaerobic digestion such as the ADM1,27 which
considers 26 state variables and 8 algebraic vari-
ables, and models many phenomena; however, a
global analysis of the ADM1 becomes a very com-
plex task. Even if not all the phenomena involved
in the process are included in the model (1–2), it is
adequate for global analysis of the methanogenesis
stage (the most important stage concerning process
stability) by the phase portrait method, which re-
quires two variables. The reduction of this model
(1–2) is easier than a reduction of the ADM1. Addi-
tionally, the model is used to evaluate the proposed
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control strategy. In future works, the control strat-
egy will be verified on other models such as the
ADM1 as well as in real time.

Model analysis

In Carlos-Hernandez et al. 2004,28 the authors
present an analysis of matrix eigenvalues consider-
ing several operating points (local analysis). Even if
that analysis allows the determination of process
stability for all the considered points, it is hard to
obtain further information about the influence of
operating conditions on stability. For this reason, a
global analysis is done using phase portraits.29 This
method consists of drawing the trajectories for dif-
ferent initial conditions in the phase plane. Then,
qualitative analysis can be done in order to obtain
information concerning process stability. The phase
portrait can be applied for a two variables system.
For this reason, model (1–2) is reduced by singular
perturbations in order to separate the fast from the
slow dynamics. Since the slow stage is the most im-
portant for the analysis presented in this paper, only
methanogenesis dynamics are considered ([S2] and
[X2]). The fast dynamics are neglected, but the phe-
nomena associated with them are still present; then,
terms concerning the fast dynamics are included in
the slow dynamics expression.

Fig. 1 displays a phase portrait obtained from
this reduced model via simulations; different initial
conditions are used to simulate the process, and the
respective trajectories are drawn on the phase plane.
A typical step on the input substrate is also consid-
ered for the simulations. Two operating regions are
easily distinguished. On the right region, trajectories
have an origin with high substrate concentration, and
as the substrate is degraded, they converge to a point
where the microorganisms reach a maximal growth;
consequently, the substrate is transformed and

reaches a minimal value. This point is known as the
functioning point. Indeed, the attraction area to the
functioning point is the desired region for process
operation. On the other hand, trajectories on the left
region converge to a point where the micro-organ-
isms disappear from the reactor, which implies that
the substrate attains a maximal value because treat-
ment is not possible. This point is known as wash-
out, and to operate the process on its attraction area
is undesirable and must be avoided. The line separat-
ing the attraction regions is known as the stability
limit. Additionally, when trajectories are reaching
the equilibrium point, a change of direction appears,
indicating a disturbance inception.

Simulations show that the anaerobic process is
able to reject small disturbances on the input sub-
strates; however, for large disturbances the microor-
ganisms are unable to treat the substrate, which in-
creases causing washout. Then, for large distur-
bances, control strategies must be implemented in
order to avoid stability limit crossings.

Synthesis of a fuzzy control strategy

The structure of the proposed strategy is shown
in Fig. 2.

The main idea of this control scheme is to com-
bine different control actions in order to minimize
their drawbacks and to profit from their advantages:
dilution rate (D) changes reject larger disturbances
and supplying a base (binc) allows the process to
produce a large amount of methane. Besides, the
FCS permits detection of trajectories leading to
washout; consequently, the most adequate control
action is applied in order to avoid this phenomenon.

State observer description

Biomass soft sensors have different advantages
in comparison with hard sensors. The former are
less expensive and easy to implement and use; be-
sides, the existing solid sensors are built from a bio-
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logical approach, and are inadequate for automatic
control. For example, they are based on turbidity or
capacitance properties, and then it is difficult to de-
termine different microorganism populations.

In a previous paper24 a TS observer for anaero-
bic digestion in a CSTR was developed. This struc-
ture is based on several linear observers, which are
interpolated by a fuzzy algorithm in order to obtain
the non-linear dynamics. The inference rules are
composed of linguistic variables as premises and
dynamic systems (instead of linguistic variables) as
consequents. For premises, a PCA is used as a
guide to select the fuzzy input variables and the
number of fuzzy sets for each variable: pH and D, 5
and 4 fuzzy sets, respectively, as illustrated in Fig.
3. Each combination of fuzzy sets corresponds to a
process equilibrium point; for each one of these
points, a local observer is synthesized. These local
observers are validated around the respective equi-
librium point, and are used as output variables in
the consequents, meaning that the tuning of input
fuzzy variables implies initialization of the output
ones. The fuzzy system output is determined from
the average center method, and since no fuzzy sets
are used in the consequents, an additional proce-
dure to tune output variables is not required.

Twenty inference rules are deduced, with the
following structure:

IF pH is pH(�) AND D is D(�)

THEN the observed state is

d

d i i i

�
� ( � )

x

t
A x B u K y y� � � � (r1)

y C x� i
�

where � stands for VERY WEAK, WEAK, AVER-
AGE, STRONG or VERY STRONG for pH fuzzy
sets; and � stands for LOW, NORMAL, HIGH
or VERY HIGH for D fuzzy sets, i � 1,…, 20,
A�R3x3 is the state matrix, B�R 3x3 is the input ma-
trix, C�R 2x3 is the output matrix and K�R3x2 is the
observer vector gains. Note that the observer model
considers only three state variables ([X2], [S2], [IC])
related to methanogenesis; then, the fuzzy observer
has 3 inputs ([S2]in, [IC]in and D) and 3 outputs
([X2], [S2] and [IC]).

From this fuzzy rules structure, it is easy to see
that the active observers at each instant are deter-
mined by pH and D. It is important to note that a
maximum of 4 local observers are active simulta-
neously.24 To recover the non-linear dynamics, the
estimated states supplied by the local observers are
interpolated using the defuzzyfication algorithm de-
scribed by:
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	 is known as the membership function and is
calculated as:

	 	i j
k� 
 [ ]v (5)

where 	[ ]v j
k is the membership degree of variable vj

on the fuzzy set Vk and 	 i
i�

� �
1

1

r

.

The experiments for the model and observer
validation were performed during 10 days (batch
experiment) and 30 days (continuous experiments),
as shown in a previous work.24

Control law synthesis

A PI controller based on fuzzy logic and L/A
approaches is proposed for bicarbonate regulation.
The L/A approach is based on logarithmic and
antilogarithmic (exponential) transformations,
which allow the controllers to take into account
positivity constraints for the process variables.16,17

In fact, the inputs and states (flows and concentra-
tions) must always be positive since negative values
are unreal. The L/A approach is applied in order to
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fulfill positive constraints as follows: a logarithmic
transformation is done to lead the signals from the
real constraint domain to a fictive unconstraint one,
where the information is processed. Then, an expo-
nential transformation is done to return from the
fictive to the real domain. A PI L/A controller for
bioprocess27 is based on a discrete PI represented
by eq. (6), where uk is the controller output, y the
process output, y* the setpoint, Kp and Ki the pro-
portional and integral gains respectively, Ts is the
sampling time and k is an integer representing sam-
ples.

u u K y y T K y yk k p k k s i k k� � � � �� �1 1( ) ( )* (6)

Eq. (7) is the L/A equivalent of (6); it is neces-
sary to replace mathematical operations as follows:
addition by multiplication, subtraction by division
and multiplication by exponential:
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The structure of the fuzzy PI L/A proposed
in this paper is similar to (7), replacing K1 and K2
by K1f and K2f (8–9), which are time-variant and
on-line computed as a function of the error and its
respective change rate. Eqs. (8) and (9) are based
on the minimal fuzzy PI approach.20,21 The input
fuzzy variables selection is based on the output er-
ror signal from a specific process (in this case error
on bicarbonate regulation). Two input variables are
selected: error (ek) and change of error rate, named
rate for short (rk). One output fuzzy variable is se-
lected, and is related to the control action required
to minimize the respective error. Fuzzyfication of
variables is shown in Fig. 4, where Ge, Gr and Gu
are scalers for error, rate and output, which are spe-
cially important when signals are small. Then, four
fuzzy rules are deduced (r2 – r5).

If error � error positive AND rate �
� rate positive then output � output negative (r2)

If error � error positive AND rate �
� rate negative then output � output zero (r3)

If error � error negative AND rate �
� rate positive then output � output zero (r4)

If error � error negative AND rate �
� rate negative then output � output positive (r5)

Defuzzyfication is done by using the average
center method. The tuning methodology is detailed
in two papers dealing with minimal fuzzy PI.20,21

From the defuzzyfication stage, (8) and (9) are ob-
tained.
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L is selected according to the process dynamic;
it represents the permissible amplitude of the error.
Gu, Ge and Gr are tuned as follows. First, the values
of the static gains of the fuzzy PI L/A (when
ek � rk � 0) are computed from (8) and (9) as:

K G G1 025s u r� .

K G G2 025s u e� .
(10)

After that, it is assumed that the fuzzy static
gains are equal to the PI L/A gains (before
fuzzyfication):

K G G1 025� . u r

K G G2 025� . u e (11)

Combining (10) and (11), then:

G
K

G

K

Gu
r e

� �
4 41 2

(12)
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Fixing Gu � 4 in (12), it is easy to see that
Gr� K1 and Ge� K2.

Following the methodologies described above,
it is possible to obtain discrete fuzzy PI L/A con-
trollers for anaerobic digestion considering dilution
rate changes (Dk) and bicarbonate supply (binc_k) as:
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The integral and proportional gains are computed
with eqs. (8–9). Then, the fuzzy PI L/A approach al-
lows the controller to take into account positivity con-
straint of variables, and also allows the gains to
change as a function of operation conditions.

Fuzzy supervisor control development

The supervisor has two main tasks: i) detect the
process state, and ii) select the most adequate con-
trol action allowing smooth switching (if required)
between them. The implicit idea is to detect the at-
traction region where the process is working; if any
operating conditions cause the process to move
away from the operating domain, the supervisor
must determine and apply the control action which
allows the bacteria to grow in order to avoid wash-
out. Besides, if a variation on the operation condi-
tions can be managed by the process itself, the su-
pervisor must allow the system to operate in open
loop. These objectives are achieved monitoring the
variables that are indicators of the biological activ-
ity inside the reactor as a consequence of variations
on the operating conditions. Two variables are pro-
posed for the fuzzy inference rules: increase of
methane production (�FCH4 ) and organic daily load
per biomass unit (ODL/[X2]). The number of fuzzy
sets for each variable is determined as follows: a se-
ries of simulations are performed in order to clas-
sify the input variables behavior as a function of the
operation conditions. This analysis allows �FCH4 to
be expressed as a function of the disturbance ampli-
tude: a low variation is caused by a small distur-
bance that can be rejected by the process without a
control action; meanwhile, a high variation is
caused by a larger disturbance that requires a con-
trol action to be rejected. Then, two fuzzy sets are
chosen as shown in Fig. 5; the first one indicates
that a control action is required, and the second one
points out that the process is able to operate in open
loop. Besides, ODL/[X2] represents the maximal
quantity of organic load that a biomass unit can

treat during a working day. There exists a limit for
this variable; above it, a control action is required
to avoid washout, and below this limit, the process
can work in open loop. Then, the input disturbances
can be classified by this variable into small, average
and large. For this reason, three fuzzy sets are de-
termined as shown in Fig. 5. Concerning the output
fuzzy variables, three operation regions for the pro-
cess are identified: open loop, closed loop with binc
action, and closed loop with D action. Since no
fuzzy sets are used in the consequents, an additional
procedure to tune output variables is not required.

The Takagi-Sugeno algorithm30,31 is used to de-
fine the supervisor. From empirical knowledge,
each fuzzy set is associated with a control action;
then six fuzzy inference rules are deduced (r6-r11):

If ODL/[X2] is SMALL and �FCH4 is LOW
then u � open loop (r6)

If ODL/[X2] is SMALL and �FCH4 is HIGH
then u � open loop (r7)

If ODL/[X2] is AVERAGE and �FCH4 is LOW
then u � binc (r8)

If ODL/[X2] is AVERAGE and �FCH4 is HIGH
then u � binc (r9)

If ODL/[X2] is LARGE and �FCH4 is LOW
then u � D (r10)

If ODL/[X2] is LARGE and �FCH4 is HIGH
then u � D (r11)
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Defuzzyfication is done using the average cen-
ter method (15):
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with R the number of rules, k and l the kst and the lst

fuzzy sets of ODL/[X2] and �FCH4 , respectively;
the symbol * indicates multiplication.

Simulations results and discussion

The proposed strategy is compared with classi-
cal PI controllers considering the same tuning
methodology and the same operation conditions.
Classical PI controllers are implemented independ-
ently without the supervisor control. A set of simu-
lations close to experimental conditions are per-
formed considering disturbances on [S2]in. This
kind of disturbance is selected since input substrate
increases are the most difficult to reject in real sys-
tems. The amplitude of disturbances (A2) is given as
a normalized percentage (A2 � 1 is 100 % of the
initial value). All simulations are performed for 900
h (37 days).

A disturbance A2 � 1.5 is incepted at time
t � 50 h; the process behavior is shown in Fig. 6. It
can be seen that the PI for binc action allows the bi-
carbonate to be regulated in short time; addition-
ally, biomass [X2] increases and leads to a new
equilibrium point. The PI for D action does not
have a relevant influence on bicarbonate regulation
and biomass growth. Concerning the FCS, �FCH4
belongs to LOW and ODL/[X2] belongs to SMALL;
both fuzzy sets are associated to OPEN LOOP op-
eration; then a control action is not required since
the process itself is able to reject the disturbance.
For this reason, the supervisor allows the process to
operate in open loop (binc and D constants at equi-
librium values); consequently, [HCO3

�] reaches the
set point by itself and [X2] grows also by itself until
it reaches a new equilibrium value.

A disturbance A2 � 2.2 is incepted at time
t � 50 h; the process behavior is shown in Fig. 7.
The PI for binc action is unable to reject the distur-
bance; [HCO3

�] is not regulated and [X2] reaches
washout. The PI for D action allows the process to
reject the disturbance; [HCO3

�] is regulated and [X2]
increases and reaches a new equilibrium point. On
the other side, the FCS works as follows: when the
disturbance is incepted, �FCH4 belongs to HIGH
(associated to closed loop) meanwhile ODL/[X2]
belongs to LARGE (associated to D action). Then,
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F i g . 6 – Comparison of the FCS with PI controllers considering a small disturbance on [S2]in. PI for binc action:
doted line, PI for D action: dashed line, FCS: continuous line



the supervisor allows the D action to be applied;
consequently, [HCO3

�] starts to be regulated and
[X2] tends to a new equilibrium value. As the action
is applied, �FCH4 continues to belong to HIGH,
meanwhile ODL/[X2] decreases and belongs to
AVERAGE (associated to binc action). Then, action
D is progressively stopped and binc starts to be ap-
plied. Consequently, [X2] and [HCO3

�] decrease when
D is stopped; when binc is applied [X2] and [HCO3

�]
increase again leading to a new equilibrium point.
Finally, �FCH4 leaves HIGH and belongs to LOW
(associated to open loop); meanwhile ODL/[X2] de-
creases and belongs to SMALL (associated to open
loop). This situation implies the disturbance has
been rejected. Then, the supervisor stops binc action
and the process operates in open loop again. If
other disturbance is incepted, the process will oper-
ate similar to the previous description.

As a subsequent test, the disturbance amplitude
is increased to A2 � 3 and incepted at time t � 50 h;
the process behavior is shown in Fig. 8. The PI for
D action is unable to reject the disturbance; [HCO3

�]
is not regulated and [X2] reaches washout. Concern-
ing the FCS, the process behaviour is similar to the
description for A2 � 2.2. In this case, D action is
applied longer in comparison with previous simula-
tions. This is a normal situation since the distur-
bance is larger.

With the proposed control strategy the process
is able to operate adequately for disturbances until
A2 � 5. For 5 < A2 < 6.5 the washout is not reached;
however, the control actions require a lot of time to
reject the disturbance and then the bicarbonate reg-
ulation becomes slow. For A2 > 6.5 the washout
phenomena cannot be avoided.

Another kind of simulation considering the pH
effect is performed. A disturbance corresponding to
10 % on pH is incepted at time t � 50 h. The inde-
pendent classical PI controllers are not considered for
this test. The results are shown in Fig. 9. The process
behaviour is similar as for the previous descriptions.
The supervisor determines the disturbance amplitude
and allows the corresponding control actions to be ap-
plied; pH returns to the equilibrium value and [X2] in-
creases reaching a new equilibrium point.

From the previous simulations, it is possible to
conclude that the proposed control strategy enhances
the process performance. The supervisor detects a
disturbance on the input substrate and determines the
required control action in order to keep the system
on the operating area. For small disturbances, the su-
pervisor determines that a control action is not nec-
essary and the system operates in open loop. This is
an economic advantage since energy and bicarbonate
used by control actions is saved. When control ac-
tions are required, the supervisor carries out a
smooth switching, avoiding oscillations.
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F i g . 7 – Comparison of the FCS with PI controllers considering A2 � 2.2. PI for binc action: doted line, PI for
D action: dashed line, FCS: continuous line
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F i g . 8 – Comparison of the FCS with PI controllers considering a large disturbance on [S2]in. PI for D action:
dashed line, FCS: continuous line

F i g . 9 – FCS performance considering the pH effect



Conclusions

It is possible to conclude that fuzzy control is
an interesting alternative for improving anaerobic
process performance. The main advantages of the
proposed control scheme are as follows:

i) it allows different control actions to be com-
bined in order to minimize individual drawbacks
and profit from their advantages, which allows
larger disturbances rejection and methane produc-
tion increases; ii) it allows detection of the trajecto-
ries leading to washout; by the selection of the most
adequate control action (D, binc or even open loop),
iii) feasible measures such as biogas and bicarbon-
ate are required; for restrictive variables such as
biomass a state observer is proposed, and iv) the
proposed control strategy shows a good com-
promise between efficiency and complexity for
real-time implementation.

The obtained simulation results evince an im-
proved performance of the anaerobic process in the
presence of large disturbances on the input sub-
strate. Small disturbances are rejected by the pro-
cess itself (open loop operation); for large distur-
bances, a combination of binc and D actions is done
in order to reject disturbances. After this rejection,
the process returns to open loop mode operation.

Different subjects are identified for further de-
velopments as: a) a methodology to tune the super-
visor parameters in order to formalize the empirical
knowledge, and b) the experimental validation of
the proposed strategy; which would allow the user
to analyze the influence of the FCS over the hy-
draulic residence time distribution.

L i s t o f s y m b o l s

A2 � amplitude of disturbance

(Ai, Bi, Ci) � state space representation for the ith equi-
librium point

BZ� � Total of cations, mol dm–3

binc � supplying base action, mol dm–3

D � dilution rate, h–1

e � error

F � molar flow rate, mol h–1

f � set of non-linear functions

Ge, Gr, Gu � scalers for error, rate and output

g � set of linear algebraic equations

h � set of non-linear functions depending on dy-
namic variables

Ks2 � saturation constant, mol dm–3

Ki2 � inhibition constant, mol dm–3

Kp, Ki � proportional and integral gains

K1, K2 � PI L/A gains

K1f, K2f� fuzzy PI L/A gains

L � permissible amplitude of error

Q � volume flow rate, dm3 h–1

R � number of rules

r � change of error rate

Ts � sample time, h

t � time, h

U � dynamic of inputs in the L/A domain

u � dynamic of inputs in the real domain

V � volume, dm3

z � charge number of a cation B

xa � physico-chemical part of process

xb � biological dynamic part of the process

[S] � substrate concentration, mol dm–3

[X] � biomass concentration, mol dm–3

Y � dynamic of outputs in the L/A domain

y � dynamic of outputs in the real domain

� � specific growth rate, h–1

� � pH fuzzy sets

� � D fuzzy sets

	 � membership function
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