88,883 research outputs found

    Is there a global model of learning organizations? An empirical, cross-nation study

    Get PDF
    This paper develops and tests a learning organization model derived from HRM and dynamic capability literatures in order to ascertain the model’s applicability across divergent global contexts. We define a learning organization as one capable of achieving on-going strategic renewal, arguing based on dynamic capability theory that the model has three necessary antecedents: HRM focus, developmental orientation and customer-facing remit. Drawing on a sample comprising nearly 6000 organizations across 15 countries, we show that learning organizations exhibit higher performance than their less learning-inclined counterparts. We also demonstrate that innovation fully mediates the relationship between our conceptualization of the learning organization and organizational performance in 11 of the 15 countries we examined. It is the first time in our knowledge that these questions have been tested in a major, cross- global study, and our work contributes to both HRM and dynamic capability literatures, especially where the focus is the applicability of best practice parameters across national boundaries

    Quantum fluctuations in the spiral phase of the Hubbard model

    Full text link
    We study the magnetic excitations in the spiral phase of the two--dimensional Hubbard model using a functional integral method. Spin waves are strongly renormalized and a line of near--zeros is observed in the spectrum around the spiral pitch ±Q\pm{\bf Q}. The possibility of disordered spiral states is examined by studying the one--loop corrections to the spiral order parameter. We also show that the spiral phase presents an intrinsic instability towards an inhomogeneous state (phase separation, CDW, ...) at weak doping. Though phase separation is suppressed by weak long--range Coulomb interactions, the CDW instability only disappears for sufficiently strong Coulomb interaction.Comment: Figures are NOW appended via uuencoded postscript fil

    Community detection in multiplex networks using locally adaptive random walks

    Full text link
    Multiplex networks, a special type of multilayer networks, are increasingly applied in many domains ranging from social media analytics to biology. A common task in these applications concerns the detection of community structures. Many existing algorithms for community detection in multiplexes attempt to detect communities which are shared by all layers. In this article we propose a community detection algorithm, LART (Locally Adaptive Random Transitions), for the detection of communities that are shared by either some or all the layers in the multiplex. The algorithm is based on a random walk on the multiplex, and the transition probabilities defining the random walk are allowed to depend on the local topological similarity between layers at any given node so as to facilitate the exploration of communities across layers. Based on this random walk, a node dissimilarity measure is derived and nodes are clustered based on this distance in a hierarchical fashion. We present experimental results using networks simulated under various scenarios to showcase the performance of LART in comparison to related community detection algorithms

    Fermionic R-operator approach for the small-polaron model with open boundary condition

    Full text link
    Exact integrability and algebraic Bethe ansatz of the small-polaron model with the open boundary condition are discussed in the framework of the quantum inverse scattering method (QISM). We employ a new approach where the fermionic R-operator which consists of fermion operators is a key object. It satisfies the Yang-Baxter equation and the reflection equation with its corresponding K-operator. Two kinds of 'super-transposition' for the fermion operators are defined and the dual reflection equation is obtained. These equations prove the integrability and the Bethe ansatz equation which agrees with the one obtained from the graded Yang-Baxter equation and the graded reflection equations.Comment: 10 page

    Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in 2+1 dimensions

    Full text link
    Riemann theta functions are used to construct one-periodic and two-periodic wave solutions to a class of (2+1)-dimensional Hirota bilinear equations. The basis for the involved solution analysis is the Hirota bilinear formulation, and the particular dependence of the equations on independent variables guarantees the existence of one-periodic and two-periodic wave solutions involving an arbitrary purely imaginary Riemann matrix. The resulting theory is applied to two nonlinear equations possessing Hirota bilinear forms: ut+uxxy3uuy3uxv=0u_t+u_{xxy}-3uu_y-3u_xv=0 and ut+uxxxxy(5uxxv+10uxyu15u2v)x=0u_t+u_{xxxxy}-(5u_{xx}v+10u_{xy}u-15u^2v)_x=0 where vx=uyv_x=u_y, thereby yielding their one-periodic and two-periodic wave solutions describing one dimensional propagation of waves

    Tensor correlation, pairing interaction and deformation in Ne isotopes and Ne hypernuclei

    Get PDF
    We study tensor and pairing effects on the quadruple deformation of neon isotopes based on a deformed Skyrme-Hartree-Fock model with BCS approximation for the pairing channel. We extend the Skyrme-Hartree-Fock formalism for the description of single- and double-lambda hypernuclei adopting two different hyperon-nucleon interactions. It is found that the interplay of pairing and tensor interactions is crucial to derive the deformations in several neon isotopes. Especially, the shapes of 26,30^{26,30}Ne are studied in details in comparisons with experimentally observed shapes. Furthermore the deformations of the hypernuclei are compared with the corresponding neon isotopic cores in the presence of tensor force. We find the same shapes with somewhat smaller deformations for single Λ\Lambda-hypernuclei compared with their core deformations. It is also pointed out that the latest version of hyperon interaction, the ESC08b model, having a deeper Λ\Lambda potential makes smaller deformations for hypernuclei than those of another NSC97f model.Comment: 13 pages, 5 figures, Physical Review C 2013 in pres

    Dynamics of photoexcited carriers in graphene

    Full text link
    The nonequilibrium dynamics of carriers and phonons in graphene is investigated by solving the microscopic kinetic equations with the carrier-phonon and carrier-carrier Coulomb scatterings explicitly included. The Fermi distribution of hot carriers are found to be established within 100 fs and the temperatures of electrons in the conduction and valence bands are very close to each other, even when the excitation density and the equilibrium density are comparable, thanks to the strong inter-band Coulomb scattering. Moreover, the temporal evolutions of the differential transmission obtained from our calculations agree with the experiments by Wang et al. [Appl. Phys. Lett. 96, 081917 (2010)] and Hale et al. [Phys. Rev. B 83, 121404 (2011)] very well, with two distinct differential transmission relaxations presented. We show that the fast relaxation is due to the rapid carrier-phonon thermalization and the slow one is mainly because of the slow decay of hot phonons. In addition, it is found that the temperatures of the hot phonons in different branches are different and the temperature of hot carriers can be even lower than that of the hottest phonons. Finally, we show that the slow relaxation rate exhibits a mild valley in the excitation density dependence and is linearly dependent on the probe-photon energy.Comment: 9 pages, 4 figure

    Upflows in the upper transition region of the quiet Sun

    Full text link
    We investigate the physical meaning of the prominent blue shifts of Ne VIII, which is observed to be associated with quiet-Sun network junctions (boundary intersections), through data analyses combining force-free-field extrapolations with EUV spectroscopic observations. For a middle-latitude region, we reconstruct the magnetic funnel structure in a sub-region showing faint emission in EIT-Fe 195. This funnel appears to consist of several smaller funnels that originate from network lanes, expand with height and finally merge into a single wide open-field region. However, the large blue shifts of Ne VIII are generally not associated with open fields, but seem to be associated with the legs of closed magnetic loops. Moreover, in most cases significant upflows are found in both of the funnel-shaped loop legs. These quasi-steady upflows are regarded as signatures of mass supply to the coronal loops rather than the solar wind. Our observational result also reveals that in many cases the upflows in the upper transition region (TR) and the downflows in the middle TR are not fully cospatial. Based on these new observational results, we suggest different TR structures in coronal holes and in the quiet Sun.Comment: 4 pages, 4 figures, will appear in the Proceedings of the Solar wind 12 conferenc
    corecore