88,883 research outputs found
Is there a global model of learning organizations? An empirical, cross-nation study
This paper develops and tests a learning organization model derived from HRM and dynamic capability literatures in order to ascertain the model’s applicability across divergent global contexts. We define a learning organization as one capable of achieving on-going strategic renewal, arguing based on dynamic capability theory that the model has three necessary antecedents: HRM focus, developmental orientation and customer-facing remit. Drawing on a sample comprising nearly 6000 organizations across 15 countries, we show that learning organizations exhibit higher performance than their less learning-inclined counterparts. We also demonstrate that innovation fully mediates the relationship between our conceptualization of the learning organization and organizational performance in 11 of the 15 countries we examined. It is the first time in our knowledge that these questions have been tested in a major, cross- global study, and our work contributes to both HRM and dynamic capability literatures, especially where the focus is the applicability of best practice parameters across national boundaries
Quantum fluctuations in the spiral phase of the Hubbard model
We study the magnetic excitations in the spiral phase of the two--dimensional
Hubbard model using a functional integral method. Spin waves are strongly
renormalized and a line of near--zeros is observed in the spectrum around the
spiral pitch . The possibility of disordered spiral states is
examined by studying the one--loop corrections to the spiral order parameter.
We also show that the spiral phase presents an intrinsic instability towards an
inhomogeneous state (phase separation, CDW, ...) at weak doping. Though phase
separation is suppressed by weak long--range Coulomb interactions, the CDW
instability only disappears for sufficiently strong Coulomb interaction.Comment: Figures are NOW appended via uuencoded postscript fil
Community detection in multiplex networks using locally adaptive random walks
Multiplex networks, a special type of multilayer networks, are increasingly
applied in many domains ranging from social media analytics to biology. A
common task in these applications concerns the detection of community
structures. Many existing algorithms for community detection in multiplexes
attempt to detect communities which are shared by all layers. In this article
we propose a community detection algorithm, LART (Locally Adaptive Random
Transitions), for the detection of communities that are shared by either some
or all the layers in the multiplex. The algorithm is based on a random walk on
the multiplex, and the transition probabilities defining the random walk are
allowed to depend on the local topological similarity between layers at any
given node so as to facilitate the exploration of communities across layers.
Based on this random walk, a node dissimilarity measure is derived and nodes
are clustered based on this distance in a hierarchical fashion. We present
experimental results using networks simulated under various scenarios to
showcase the performance of LART in comparison to related community detection
algorithms
Fermionic R-operator approach for the small-polaron model with open boundary condition
Exact integrability and algebraic Bethe ansatz of the small-polaron model
with the open boundary condition are discussed in the framework of the quantum
inverse scattering method (QISM). We employ a new approach where the fermionic
R-operator which consists of fermion operators is a key object. It satisfies
the Yang-Baxter equation and the reflection equation with its corresponding
K-operator. Two kinds of 'super-transposition' for the fermion operators are
defined and the dual reflection equation is obtained. These equations prove the
integrability and the Bethe ansatz equation which agrees with the one obtained
from the graded Yang-Baxter equation and the graded reflection equations.Comment: 10 page
Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in 2+1 dimensions
Riemann theta functions are used to construct one-periodic and two-periodic
wave solutions to a class of (2+1)-dimensional Hirota bilinear equations. The
basis for the involved solution analysis is the Hirota bilinear formulation,
and the particular dependence of the equations on independent variables
guarantees the existence of one-periodic and two-periodic wave solutions
involving an arbitrary purely imaginary Riemann matrix. The resulting theory is
applied to two nonlinear equations possessing Hirota bilinear forms:
and
where , thereby yielding their one-periodic and two-periodic wave
solutions describing one dimensional propagation of waves
Tensor correlation, pairing interaction and deformation in Ne isotopes and Ne hypernuclei
We study tensor and pairing effects on the quadruple deformation of neon
isotopes based on a deformed Skyrme-Hartree-Fock model with BCS approximation
for the pairing channel. We extend the Skyrme-Hartree-Fock formalism for the
description of single- and double-lambda hypernuclei adopting two different
hyperon-nucleon interactions. It is found that the interplay of pairing and
tensor interactions is crucial to derive the deformations in several neon
isotopes. Especially, the shapes of Ne are studied in details in
comparisons with experimentally observed shapes. Furthermore the deformations
of the hypernuclei are compared with the corresponding neon isotopic cores in
the presence of tensor force. We find the same shapes with somewhat smaller
deformations for single -hypernuclei compared with their core
deformations. It is also pointed out that the latest version of hyperon
interaction, the ESC08b model, having a deeper potential makes
smaller deformations for hypernuclei than those of another NSC97f model.Comment: 13 pages, 5 figures, Physical Review C 2013 in pres
Dynamics of photoexcited carriers in graphene
The nonequilibrium dynamics of carriers and phonons in graphene is
investigated by solving the microscopic kinetic equations with the
carrier-phonon and carrier-carrier Coulomb scatterings explicitly included. The
Fermi distribution of hot carriers are found to be established within 100 fs
and the temperatures of electrons in the conduction and valence bands are very
close to each other, even when the excitation density and the equilibrium
density are comparable, thanks to the strong inter-band Coulomb scattering.
Moreover, the temporal evolutions of the differential transmission obtained
from our calculations agree with the experiments by Wang et al. [Appl. Phys.
Lett. 96, 081917 (2010)] and Hale et al. [Phys. Rev. B 83, 121404 (2011)] very
well, with two distinct differential transmission relaxations presented. We
show that the fast relaxation is due to the rapid carrier-phonon thermalization
and the slow one is mainly because of the slow decay of hot phonons. In
addition, it is found that the temperatures of the hot phonons in different
branches are different and the temperature of hot carriers can be even lower
than that of the hottest phonons. Finally, we show that the slow relaxation
rate exhibits a mild valley in the excitation density dependence and is
linearly dependent on the probe-photon energy.Comment: 9 pages, 4 figure
Upflows in the upper transition region of the quiet Sun
We investigate the physical meaning of the prominent blue shifts of Ne VIII,
which is observed to be associated with quiet-Sun network junctions (boundary
intersections), through data analyses combining force-free-field extrapolations
with EUV spectroscopic observations. For a middle-latitude region, we
reconstruct the magnetic funnel structure in a sub-region showing faint
emission in EIT-Fe 195. This funnel appears to consist of several smaller
funnels that originate from network lanes, expand with height and finally merge
into a single wide open-field region. However, the large blue shifts of Ne VIII
are generally not associated with open fields, but seem to be associated with
the legs of closed magnetic loops. Moreover, in most cases significant upflows
are found in both of the funnel-shaped loop legs. These quasi-steady upflows
are regarded as signatures of mass supply to the coronal loops rather than the
solar wind. Our observational result also reveals that in many cases the
upflows in the upper transition region (TR) and the downflows in the middle TR
are not fully cospatial. Based on these new observational results, we suggest
different TR structures in coronal holes and in the quiet Sun.Comment: 4 pages, 4 figures, will appear in the Proceedings of the Solar wind
12 conferenc
- …