2,533 research outputs found
Solar rotating magnetic dipole?
A magnetic dipole rotating around an axis perpendicular to the rotation axis of the sun can account for the characteristics of the surface large-scale solar magnetic fields through the solar cycle. The polarity patterns of the interplanetary magnetic field, predictable from this model, agree with the observed interplanetary magnetic sector structure
Identification of the Coronal Sources of the Fast Solar Wind
The present spectroscopic study of the ultraviolet coronal emission in a
polar hole, detected on April 6-9, 1996 with the Ultraviolet Coronagraph
Spectrometer aboard the SOHO spacecraft, identifies the inter-plume lanes and
background coronal hole regions as the channels where the fast solar wind is
preferentially accelerated. In inter-plume lanes, at heliocentric distance 1.7
\rsun, the corona expands at a rate between 105 km/s and 150 km/s, that is,
much faster than in plumes where the outflow velocity is between 0 km/s and 65
km/s. The wind velocity is inferred from the Doppler dimming of the O VI
1032, 1037 \AA lines, within a range of values, whose lower
and upper limit corresponds to anisotropic and isotropic velocity distribution
of the oxygen coronal ions, respectively.Comment: 14 pages, 4 figures, 3 tables, Accepted by ApJ Letter
AGN Obscuring Tori Supported by Infrared Radiation Pressure
Explicit 2-d axisymmetric solutions are found to the hydrostatic equilibrium,
energy balance, and photon diffusion equations within obscuring tori around
active galactic nuclei. These solutions demonstrate that infrared radiation
pressure can support geometrically thick structures in AGN environments subject
to certain constraints: the bolometric luminosity must be roughly 0.03--1 times
the Eddington luminosity; and the Compton optical depth of matter in the
equatorial plane should be order unity, with a tolerance of about an order of
magnitude up or down. Both of these constraints are at least roughly consistent
with observations. In addition, angular momentum must be redistributed so that
the fractional rotational support against gravity rises from the inner edge of
the torus to the outer in a manner specific to the detailed shape of the
gravitational potential. This model also predicts that the column densities
observed in obscured AGN should range from about 10^{22} to about 10^{24}
cm^{-2}.Comment: ApJ, in pres
RHESSI Observations of the Solar Flare Iron-line Feature at 6.7 keV
Analysis of RHESSI 3--10 keV spectra for 27 solar flares is reported. This
energy range includes thermal free--free and free--bound continuum and two line
features, at 6.7keV and 8keV, principally due to highly ionized iron (Fe). We
used the continuum and the flux in the so-called Fe-line feature at 6.7keV to
derive the electron temperature T_e, the emission measure, and the Fe-line
equivalent width as functions of time in each flare. The Fe/H abundance ratio
in each flare is derived from the Fe-line equivalent width as a function of
T_e. To minimize instrumental problems with high count rates and effects
associated with multi-temperature and nonthermal spectral components, spectra
are presented mostly during the flare decay phase, when the emission measure
and temperature were smoothly varying. We found flare Fe/H abundance ratios
that are consistent with the coronal abundance of Fe (i.e. 4 times the
photospheric abundance) to within 20% for at least 17 of the 27 flares; for 7
flares, the Fe/H abundance ratio is possibly higher by up to a factor of 2. We
find evidence that the Fe XXV ion fractions are less than the theoretically
predicted values by up to 60% at T_e=25 MK appear to be displaced from the most
recent theoretical values by between 1 and 3 MK.Comment: To be published, Ap
Near-infrared K-band Spectroscopic Investigation of Seyfert 2 Nuclei in the CfA and 12 Micron Samples
We present near-infrared K-band slit spectra of the nuclei of 25 Seyfert 2
galaxies in the CfA and 12 micron samples. The strength of the CO absorption
features at 2.3-2.4 micron produced by stars is measured in terms of a
spectroscopic CO index. A clear anti-correlation between the observed CO index
and the nuclear K-L color is present, suggesting that a featureless hot dust
continuum heated by an AGN contributes significantly to the observed K-band
fluxes in the nuclei of Seyfert 2 galaxies. After correction for this AGN
contribution, we estimate nuclear stellar K-band luminosities for all sources,
and CO indices for sources with modestly large observed CO indices. The
corrected CO indices for 10 (=40%) Seyfert 2 nuclei are found to be as high as
those observed in star-forming or elliptical (=spheroidal) galaxies. We combine
the K-band data with measurements of the L-band 3.3 micron polycyclic aromatic
hydrocarbon (PAH) emission feature, another powerful indicator for
star-formation, and find that the 3.3 micron PAH to K-band stellar luminosity
ratios are substantially smaller than those of starburst galaxies. Our results
suggest that the 3.3 micron PAH emission originates in the putative nuclear
starbursts in the dusty tori surrounding the AGNs, because of its high surface
brightness, whereas the K-band CO absorption features detected at the nuclei
are dominated by old bulge (=spheroid) stars, and thus may not be a powerful
indicator for the nuclear starbursts. We see no clear difference in the
strength of the CO absorption and PAH emission features between the CfA and 12
micron Seyfert 2s.Comment: 28 pages, 6 figures, accepted for publication in ApJ (10 October
2004, v614 issue
Plausible fluorescent Ly-alpha emitters around the z=3.1 QSO0420-388
We report the results of a survey for fluorescent Ly-alpha emission carried
out in the field surrounding the z=3.1 quasar QSO0420-388 using the FORS2
instrument on the VLT. We first review the properties expected for fluorescent
Ly-alpha emitters, compared with those of other non-fluorescent Ly-alpha
emitters. Our observational search detected 13 Ly-alpha sources sparsely
sampling a volume of ~14000 comoving Mpc^3 around the quasar. The properties of
these in terms of i) the line equivalent width, ii) the line profile and iii)
the value of the surface brightness related to the distance from the quasar,
all suggest that several of these may be plausibly fluorescent. Moreover, their
number is in good agreement with the expectation from theoretical models. One
of the best candidates for fluorescence is sufficiently far behind QSO0420-388
that it would imply that the quasar has been active for (at least) ~60 Myrs.
Further studies on such objects will give information about proto-galactic
clouds and on the radiative history (and beaming) of the high-redshift quasars.Comment: 10 pages, 4 figures.Update to match the version published on ApJ 657,
135, 2007 March
An Investigation into the Geometry of Seyfert Galaxies
We present a new method for the statistical investigation into the
distributions of the angle beta between the radio axis and the normal to the
galactic disk for a sample of Seyfert galaxies. We discuss how further
observations of the sample galaxies can strengthen the conclusions. Our data
are consistent with the hypothesis that AGN jets are oriented randomly in
space, independent of the position of the plane of the galaxy. By making the
simple assumption that the Standard Model of AGN holds, with a universal
opening angle of the thick torus of phi_c, we demonstrate a statistical method
to obtain an estimate of phi_c. Our data are not consistent with the
simple-minded idea that Seyfert 1s and Seyfert 2s are differentiated solely by
whether or not our line of sight lies within some fixed angle of the jet axis.
Our result is significant on the 2 sigma level and can thus be considered only
suggestive, not conclusive. A complete sample of Seyfert galaxies selected on
an isotropic property is required to obtain a conclusive result.Comment: 13 pages, Tex, 5 Postscript figures. Accepted Ap
Dynamics of Vortex Pair in Radial Flow
The problem of vortex pair motion in two-dimensional plane radial flow is
solved. Under certain conditions for flow parameters, the vortex pair can
reverse its motion within a bounded region. The vortex-pair translational
velocity decreases or increases after passing through the source/sink region,
depending on whether the flow is diverging or converging, respectively. The
rotational motion of two corotating vortexes in a quiescent environment
transforms into motion along a logarithmic spiral in the presence of radial
flow. The problem may have applications in astrophysics and geophysics.Comment: 13 pages, 9 figure
Nafion-TiO2 composite DMFC membranes: Physico-chemical properties of the filier versus electrochemical performance
TiO2 nanometric powders were prepared via a sol-gel procedure and calcined at various temperatures to obtain different surface and bulk properties. The calcined powders were used as fillers in composite Nafion membranes for application in high temperature direct methanol fuel cells (DMFCs). The powder physico-chemical properties were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and pH measurements. The observed characteristics were correlated to the DMFC electrochemical behaviour. Analysis of the high temperature conductivity and DMFC performance reveals a significant influence of the surface characteristics of the ceramic oxide, such as oxygen functional groups and surface area, on the membrane electrochemical behaviour. A maximum DMFC power density of 350 mW cm-2 was achieved under oxygen feed at 145°C in a pressurized DMFC (2.5 bar, anode and cathode) equipped with TiO2 nano-particles based composite membranes. © 2004 Elsevier Ltd. All rights reserved
- …