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SOIAR ROTATING MAGNETIC DIPOLE?

*
Ester Antonucci
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Abstract

A magnetic dlpole rotating around an axis perpendicular to

the rotation axis of the sun can account for the characteristics of the

surface large-scale solar magnetic fields through the solar cycle. The

polarity patterns of the interplanetary magnetic field, predictable

from this model, agree with the observed interplanetary magnetic sector

structure.
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SOIAR LARGE-SCALE MAGNETIC FIELDS

Weak large-scale magnetic fields appear on the sun organized in

fairly regular patterns, which evolve slowly on a time-scale of the order

of years. Besides direct observations of the photospheric magnetic

field, the detection of the interplanetary magnetic field polarity rep-

resents a collateral source of information on solar large-scale magnetic

fields (although how to relate the interplanetary field to its solar

source is still object of discussion). While the weak photospheric mag-

netic field and the polar fields are detected from 1959 and 1953 on,

respectively, the interplanetary field polarity data are available for a

period as long las five solar cycles, from 1926 on.

Several investigators have been able to identify persistent

structures, in their analyses, of both the photospheric and the inter-

planetary magnetic field. Altschuler et al. (1971) analyzed photospheric

magnetic data, from the Mt. Wilson magnetograms, for the period 1959-1966.

They described the evolution of the photospheric field in terms of surface

harmonics which are dominant for periods approximately 2-years long.

During the period 1959 - 1962, just after the maximum of solar cycle 19,

the dominant harmonic corresponds to a dipole lying in the equatorial

plane of the sun: the photospheric field is organized in two meridional

sectors. In the declining phase of the solar cycle (1962 - 1964), four

meridional sectors are the dominant structure. Around the time of sun

spot minimum and immediately after (1965 - 1966), the harmonic of a

north-south oriented dipole is significant.



Mt. Wilson data have been analyzed by Stenflo (1972) over a

larger period, which includes also the beginning of cycle 20 until 1970.

In Figure 1, the sector structure of the photospheric field, obtained

averaging the field strength over all latitudes is shown. During cycle

19 the evolution from two to four meridional sectors is clear and agrees

with the results of Altschuler et al. The appearance of a north-south

aligned dipole around the minimum of activity is also confirmed. The

situation of the photospheric magnetic sector structure during the rising

part of cycle 20 is instead of quite difficult interpretation.

Stenflo studied also the zonal structure of the photospheric

field (Figure 2), which is important in relation to one of the main fea-

tures of the weak fields: the polar fields and their reversal of polarity

near the activity maximum. Although the magnetic field observations used

are not completely reliable at latitudes higher than ±45 , the field

averages over all longitudes reveal a regular persistence ;'of positive

polarity at the south pole from 1959 to 1969 and negative polarity at the

north pole for the whole period considered (Figure 2). This is consistent

with the polar magnetic configuration expected to persist until the acti-

vity maximum of cycle 20, after the first reversal of polar fields observed

by Babcock (1959) at sunspot maximum during cycle 19. In early 1957 Bab-

cock observed a reversal from negative to positive polarity at south and

in November 1958 a reversal from positive to negative polarity at north.

In cycle 20 the cyclic alternation of the polar fields, proposed by Babcock

(1961) is confirmed; but the* reversals take place with delay, essentially

at the north pole, with respect to the time of maximum activity. Stenflo

notes a polarity reversal at the south pole (from positive to negative
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polarity) in 1969. Howard (1974) confirms the occurrence of such rever-

sal at south in June 1969 and reports definitive evidences for a polarity

reversal at the north pole in July 1971.

Besides the polar fields, in the diagram of the zonal struc-

ture, shown in Figure 2, other large-scale magnetic features are

clearly recognizable at low latitudes. Such features show the same

equatorward migration of sunspots and photospheric faculae and their

polarity coincides with the preceding polarity in sunspot groups, except

in the southern hemisphere during cycle 19. Therefore these magnetic -

regions seem to follow the strong small-scale magnetic field cycle and

can be considered related to solar activity.

Another source of information on solar magnetism became avail-

able in 1962, with the detection of the interplanetary magnetic field by

spacecraft. The main characteristic of the interplanetary field, as

observed in the ecliptic plane, is a clear polarity sector structure,

corotating with the sun and slowly evolving from a 4-sector pattern, dur-

ing the declining phase of cycle 19, to a 2-sector pattern during cycle

20 (Wilcox and Ness, 1965; Wilcox and Colburn, 1972).

At the present it is possible to extend the study of the inter-

planetary polarity structure over a long period of time, because of the

availability of polarity data inferred from high-latitude polar geo-

magnetic observations (Svalgaard, 1968; Mansurov, 1969). Svalgaard (1972),

analyzing inferred polarity data from 1926 on, notes that, at the beginning

of a new cycle, the polarity sector structure is not well-defined. In-

stead after sunspot maximum the sector pattern develops clearly with



higher probability of the occurrence of a 4-sector structure. Just at

sunspot minimum negative sectors almost disappear and for a few solar

rotations the polarity of the interplanetary magnetic field is constant.

Phenomenological Model of the Solar Weak Magnetism

A simple phenomenological model of the weak large-scale mag-

netic fields can account for the dominant photospheric magnetic config-

urations, observed on the sun, through the solar cycle. The surface

harmonics, found by Altschuler et al. (1971), assumed to be character-

istic of the corresponding solar cycle phases, might be interpreted as

manifestations of a continuous slow evolution of the solar large-scale

magnetism. In fact if the magnetic dipole, lying in the equatorial plane

of the sun at the middle of a sunspot cycle, slowly rotates around an

axis perpendicular to the rotation axis of the sun, the magnetic config-

uration of a north-south oriented dipole, chacteristic of sunspot mini-

mum, could be the result of a continuous evolution. Let us assume the

rotation of a magnetic dipole with period of 22 years, around an axis per-

pendicular to the solar rotational axis. The consequent time evolution

of the large-scale magnetic fields for a complete rotation period, corre-

sponding to solar cycles 19 and 20 is presented in Figure 3. The phase

is determined assuming that the dipole is aligned to the rotation axis of

the sun, at the beginning of a solar cycle (in agreement with both the

result of Altschuler et al. and the traditional interpretation of the

shape of the solar corona at minimum).



Figure 3a represents the situation at the beginning of cycle

19, at that time the polar magnetic field is positive at north and nega-

tive at south. As the rotation progresses from position a, through b, to

position c, the general magnetic field assumes the configuration of a

dipole lying in the equatorial plane, at half solar cycle, as observed

during the years 1959-1962. Moreover immediately after the dipole

assumes position c in Figure 3, the polar fields should undergo a polarity

reversal. At the next sunspot minimum the dipole is again aligned with

the solar rotation axis, but the dipole polarities are reversed with

respect to the preceding solar minimum, as shown in Figure 3e. Another

solar cycle can start with the correct initial polarities.

Except the photospheric 4-sector structure present in 1962-64,

this description can account for the main photospheric characteristics

of the weak magnetic field: namely the alternation of sign of the polar

fields every 11 years and the magnetic configurations at sunspot maximum

and minimum. Furthermore the rotation of the dipole implies large-scale

polarity migrations on the solar disk, which are at least qualitatively

in agreement with observational evidences such as the poleward migration

of prominences in the rising portion of the solar cycle and the expansion

and poleward migration .of the magnetic regions of following polarities

of sunspot groups.

Prominences are supposed to be associated with neutral lines

lying between large-scale regions of opposite magnetic polarity. Stenflo

(1972) points out that the maximum of prominence activity can trace the

evolution, in function of latitude and time, of polarity patterns on the

sun. The data relative to the period 1960-1969 are shown in Figure 4.
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Clearly the maximum of prominences migrates toward high latitudes start-

ing from sunspot minimum and reaches approximately 90 at the beginning

of 1970, namely at half solar cycle. If the association of prominences

with neutral lines between magnetic regions of opposite polarities is

correct, the trend of prominences maximum agrees with the rotation of

the boundary between the opposite polarity regions of the dipole on the

sun from an equatorial position (Figure 3e) to a meridional position

(Figure 3g) in the first half of cycle 20 from 1965 to 1970. This pole-

ward migration of polarity patterns leads to the polar field polarity

reversal observed in 1969 - 1971. The trend of prominence activity maxi-

mum is particularly clear from 40 up to 90 latitude; the pattern inside

the zone ±40 is probably affected by the effects of solar activity.

The expansion and poleward migration of the magnetic fields of

following polarity, in bipolar sunspot groups, is also qualitatively in

agreement with the rotation of a magnetic dipole. This phenomenon has

been usually considered as leading to the understanding of the mechanism

which builds up the solar dipolar field and induces the reversal of polar

field polarities (Babcock, 1961; Leighton, 1969). The overall effect can

be described as a poleward migration of large-scale weak magnetic fields

of opposite polarity with respect to the polar field polarity, although

a single migration of the following regions of sunspot groups proceeds on

a time-scale short compared to the solar cycle period. In the first part

of a solar cycle as shown in Figure 3b and 3f, a large-scale magnetic

region, with polarity opposite to the polar one, is indeed migrating

toward high latitudes, leading to the reversal of the polar field polarity,



A better understanding of the large-scale effects induced by the pro-

cesses of expansion and migration of the following regions of sunspot

groups could confirm the validity of the hypothesis of the slow evolution

of the solar weak magnetic field proposed in the paper.

Consequences on the Interplanetary Magnetic Field Polarity Patterns
j

A solar rotating magnetic dipole implies well-defined polarity

patterns of the interplanetary magnetic field. Recently an interesting

line of interpretation of the interplanetary polarity structure has been

proposed by Schulz (1973). He assumes that the heliomagnetic field is

frozen into the expanding solar wind, from the Alfven radius outwards,

where only dipole and quadrupole terms of the magnetic scalar potential,

deduced from the photospheric field, are likely to contribute. A

dipolar magnetic field, with axis aligned to the rotation axis of the sun,

because of the solar wind flow, forms an equatorial neutral sheet,
\
\

separating the two regions of opposite polarity above and below the

equatorial plane of the sun. In the interplanetary field, at the orbit
\
\

of the earth, no sector structure corotating with the sun should be
\.

detected. But, if the magnetic axis of the dipole is inclined^ with
V

respect to the rotation axis, a 2-sector pattern is observed in\ the

interplanetary field. In fact, during a solar rotation an observer at
\

the earth crosses the neutral plane twice, detecting a polarity rever-

sal (sector boundary) and spends half rotation above and below the ne\utral

\
plane, in regions of uniform opposite polarity (polarity sectors). Tho

4-sector structure is achieved introducing, beyond the dipole term, a



quadrupole term, namely an azimuthal asymmetry. The consequence is a

neutral sheet warped with respect to the equatorial magnetic plane. There-

fore the neutral sheet intersects the equatorial and ecliptic plane four

times, this corresponds to four sector boundaries, separating four

opposite polarity regions.

In the hypothesis of the rotating magnetic dipole the annular

neutral sheet lies in the equatorial plane of the sun at solar minimum,

because magnetic and rotational axis are aligned. As a consequence the

sector structure of the interplanetary field disappears. This might explain

the lack of sector structure, lasting for a few solar rotations, noticed

by Svalgaard (1972) around solar minima. As the rotation goes on, the

magnetic axis becomes inclined with respect to the rotation axis. There-

fore, in the assumption of a simple dipolar field, a 2-sector polarity

structure develops in the interplanetary magnetic field, between two

consecutive solar minima. Moreover the sector pattern preceding solar

minimum is reversed with respect to the sector pattern after solar minimum.

In fact, because of the rotation of the magnetic dipole, the same equa-

torial region corotating with, the sun, which, at the end of a cycle is of

/
positive polarity (Figure 3d), at the beginning of the following cycle is

/

of negative polarity (Figure 3f). Provided the fact that during the
/

years around minimum of activity the rotation period of the interplane-

tary magnetic features is constant, near 27 days (Svalgaard, 1972), a
/

reversal of the 2-sector pattern should be observed; Namely the periodic
/,

time series of the polarity data should display a phase shift correspond-

ing to half'a period.
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To compare the observed polarity with the features predictable

in case of a rotating magnetic field simply dipolar, 2-sector patterns

should be isolated from the 4-sector structure. This can be done corre-

lating the polarity data with a sinusoidal test-function, with period

equal to the corotation period of the polarity patterns. A period of

27 days, characteristic of the declining phase and the minimum of the

solar cycle, is chosen. A test-function simulating an ideal 4-sector

pattern should have a period of half a corotation period of the inter-

planetary field. Svalgaard's inferred polarity data have been used for

the period 1926 - 1973. They can be represented by a time series of

daily values of the kind ±1 respectively for positive and negative polarity.

Consecutive samples of polarity data, 27 Bartels rotations long, are cross-

correlated with the same test-function of equivalent length, with a time

lag varying from 0 to 26 days. Each row of the plot of Figure 5 represents

a set of 27 cross-correlation coefficients reported in function of time

lag (a row is actually formed by 54 values, because each set of cross-

correlation coefficients is repeated twice on the same row). The sets of

coefficients are plotted in sequence in the consecutive rows. On the

left of the plot the numbers of the first Bartels rotation of the data

sample, reported in the corresponding row, are represented. Dashed areas

indicate positive cross-correlation coefficients X).l. Therefore the plot

in Figure 5 provides an information about the time lag for which polarity

data and test-function are positive correlated in the subsequent periods.

The phase shifts of the polarity data with respect to the test-function as

a reference, describe how the phase of the 2-sector pattern changes in
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time. The phase information is not completely reliable for periods

around the maximum of solar activity, because, at that time, the coro-

tation period of the polarity pattern approaches a value of 28.5 days

(Svalgaard, 1972), deviating from the test-function period.

The clear pattern arising from the plot of the positive cross-

correlation coefficients indicates that a 2-sector polarity pattern

exists for most of the time and has a phase fairly constant for several

years. The 2-sector'pattern is not significant only during the 2-year

periods starting with Bartels rotation number 1381 and 1408. At each

sunspot minimum the phase of the 2-sector pattern changes abruptly, in

fact in Figure 5 the dashed areas shift of about half a Bartels rotation

in correspondence to the horizontal lines which separate one solar cycle

from another. This means that the 2-sector polarity pattern before solar

minimum is in opposition of phase with respect to the 2-sector polarity

pattern after minimum. The direct observation of this effect in the

polarity data can be easily masked by the presence of a 4-sector polarity

structure at sunspot minimum. But the effect can be clearly revealed by

using cross-correlations of polarity data and test-function, as just des-

cribed .

An annual variation in the predominant polarity of the inter-

planetary field has been observed by Rosenberg and Coleman (1969). Wilcox

and Scherrer (1972) confirmed this effect, analyzing the inferred inter-

planetary polarity data for the period 1926-1971. The polarity annual

variation is related to the heliolatitude of the earth: at northern
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heliolatitudes the predominant polarity detected during a solar rotation

agrees with the polarity of the northern polar magnetic field of the sun

(at south it agrees with the southern polar field). Therefore the phase

of the polarity yearly variation has to change at the reversal of the

polar fields. This effect is indeed observed about 2.6 years after the

sunspot maximum by Wilcox and Scherrer, for all the examined solar cycles.

The neutral line of the solar magnetic dipole separates only the

equator in two equal regions of opposite polarities. At latitude dif-

ferent from zero, the solar parallels cut the solar surface in two un-

equal regions of opposite polarity. Therefore an observer, north of the

helioequator will detect, in the interplanetary magnetic field, a pre-

dominance of the polarity of the northern polar fields of the sun, during

one solar rotation. The degree of predominance of one polarity with

respect to the other should be proportional to the heliolatitude of the

observer and, for the same latitude, should change through the solar

cycle with maximum at sunspot minimum and zero at the middle of a solar

cycle. In fact, at the reversal of the polar fields, at each latitude,

the opposite polarities are in balance, because the neutral line is

meridional (Figure 3c). Therefore the proposed magnetic model can

easily explain the Rosenberg-Coleman effect. Furthermore it is worth

noting that the reversal of polar fields, inferred by the phase change

of the polarity annual variation (Wilcox et al., 1972), takes place 2.6

years after sunspot maximum, and therefore around the middle of a solar

cycle. In fact such reversal should occur at the time in which the

dipole lies in the equatorial plane; this occurs at 1/4 of the rotation

period of the dipole or half solar cycle.

9
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Expected Photospheric Magnetic Sector Boundaries

Recently Svalgaard, Wilcox and Duvall (1974) proposed a model

of the boundary separating large-scale photospheric fields, which

reveals to be rather successful in the interpretation of several patterns

observed in the solar corona. This model represents an attempt to link

the photospheric magnetic sectors (associated with the interplanetary

polarity patterns) and the polar magnetic fields. The solar sector

boundaries, separating regions of opposite polarity, are assumed to be

meridional. But, if the polarity of the large-

scale unipolar regions at lower latitudes is reconnected to the polar

region polarity, the sector boundaries should assume a distorted "S"

shape. In Figure 6&3 d, the sector boundaries, separating respectively

(+,-) and (- ,+) polarities, are represented for the first part of cycle

20. When the polar field polarity reverses, the reconnection between

magnetic sectors and polar field changes as well as the orientation of

both kinds of sector boundaries (Figure 6c, f). After this transition

the geometry of the photospheric magnetic fields is supposed to persist

until the next polar field reversal.

In the assumption of a rotating magnetic dipole, the (+,-)

and (-,+) photospheric boundaries are present, for most of the solar

cycle, just because of the rotation of the neutral line separating the

two magnetic regions of the dipole. The inclination of the solar

boundaries varies continuously, in particular at the middle of a solar

cycle they assume the traditional meridimal configuration (Figure 6c, g).
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Even if the dynamics of the large-scale fields and the inter-

pretation of the magnetic boundaries differ in the two models, the weak

field geometry, proposed by Svalgaard et al., agrees fairly well with

the magnetic configurations, expected in the rising part of the cycle,

at half cycle and in the declining part, in case of a rotating dipole

(Figure 6a, d; b, e; c, f compared with Figure 3f, g, h). Yet these

configurations should not be considered stationary, but in the context

of a continuous rotation. Obviously the interpretation of the magnetic

pattern, proposed by Svalgaard et al., has been restricted to the case

in which two sectors are present. Therefore the S-shaped sector bound-

aries (+, -) and (-, +) reconnect separating the polar surface into two

main regions of opposite polarity. And Figure 6 roughly suggests the

existence of dipoles with magnetic axes inclined with respect to the solar ro-

tation axis. As far as the proposed photospheric boundaries are concerned,

the orientation E-W or W-E on the solar disk, predicted by the two models

through the solar cycle, is the same, except at sunspot minimum. However

for a rotating dipole the inclination of the sector boundary with respect

to the solar equator should slowly change in time.

The sector boundary orientation and configuration can be tested

by means of coronal observations. Field lines, coming from large-scale

photospheric magnetic regions of opposite polarity, are likely to assume

a configuration of closed loops in the inner corona and of streamers in

the outer corona, extended by the solar wind in the interplanetary space.

Observations of coronal streamers (Hansen et al., 1972; Howard et al., 1974)

and evidences for the existence of closed loops in the inner corona

13



(Antonucci et al., 1974) indicate that such features are organized in a

remarkably regular geometry, which can be associated with the polarity

structure of the interplanetary magnetic field.

Closed magnetic loops, developing over the photospheric sector

boundaries, should be associated with high density coronal regions, which

originate enhancements in the coronal line emission. The proposed con-

figuration of photospheric boundary for a dipole (2-sector structure)

predicts correlation between enhanced emission regions at high latitudes

in the northern and southern hemisphere, with a time lag equal to half

solar rotation, for most part of the solar cycle. In fact the neutral

line of the dipole (Figure 3b) reaches the highest latitudes at north and

o
south at 180 longitude apart, this corresponds to half solar rotation

period in time. A study of the cross-correlation of coronal green line

emission, in the range of 40 -60 in latitude in the northern and southern

hemisphere, over an extended period of time 1947-70, confirms these pre-

dictions (Antonucci et al., 1974).

Furthermore at the limbs the position of a sector boundary should

be recognizable through the associated coronal streamer. Svalgaard et al.

discuss the relation of high^-latitude streamers with the configuration of

the magnetic sector boundary. In particular, during the last part of

cycle 20, very stable high latitude streamers have been observed by

Howard et al. (1974) in white light, from 3 to 9R , with the OSO-7 corono-

graph. A streamer is observed at the limb, at high latitude position, for

a few days. Then the white light enhancement drifts slowly towards the

equator and finally a streamer becomes visible in the opposite hemisphere.

Such a pattern of alternate northern and southern streamers seems to be

14



very persistent over several solar rotations. At the end of 1972, only

one streamer appears in each rotation, in the northern hemisphere, sep-

arated by 180 in longitude from a corresponding southern streamer. This

simple coronal pattern of two streamers, one at north and one at south,

starts when in the interplanetary field a 2-sector structure appears.

Moreover both streamers are visible at the limbs (they are 180 longitude

apart) in correspondence to the central meridian passage of a sector

boundary (Svalgaard et al., 1974). The ideal line which joins the two

streamers intersects the central meridian at the equator, where the

photospheric sector boundary is individuated, tracing back to the sun the

interplanetary sector boundary. When, for example, a (-,+) boundary

inferred from the interplanetary boundary is at central meridian, the line

joining the streamers coincides with the neutral line of the dipole vis-

0
ible on the solar disk in correspondence of a (-,+) equatorial sector

boundary (Figure 3h and Figure 6f, which refer to the last part of

cycle 20).
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Conclusion

The knowledge that we have of persistent large-scale solar

phenomena associated with the weak photospheric magnetism, seems to

suggest the possibility of a continuous evolution of the magnetic pattern.

This evolution can be simulated by the presence of a rotating magnetic

dipole, with a 22-year period, on the solar surface. The implications

of this hypothesis seems to agree with the following observational

evidence:

a) The zonal and sector structures of the photospheric field

through cycle 19;

b) The alternation of the polar field polarities every 11-years;

c) The large-scale migration of features associated with polarity

patterns, such as prominences and following magnetic regions

of bipolar sunspot groups;

d) The polarity pattern expected in the interplanetary magnetic

field and, in particular, the reversal of polarity of a

sector at sunspot minimum;

e) The yearly variation of the interplanetary polarity associated

with the heliolatitude of the earth;

f) The geometry of (+,-) and (-,+) photospheric sector boundaries

through the solar cycle, inferred from contemporary inter-

planetary and coronal observations.

In the attempt to give a simple general interpretation of the

large-scale solar magnetism, in terms of a rotating dipole, I stressed
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the importance of the 2-sector photospheric and interplanetary magnetic

patterns.

The occurrence of a 4-sector structure, more likely at the end

of a sunspot cycle, has not been taken into account and may indicate the

presence of a quadrupole contribution (which would affect the magnetic

dipole in the way proposed by Schulz, 1973).
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Figure Captions

Figure 1. Sector diagram of the photospheric magnetic field averaged

over all latitudes. Solid lines represent positive polarity,

dotted lines negative polarity. The contour levels corres-

pond to ±0.5, ±1, ±2, ±4, ±8 and ±16G (Stenflo, 1972).

Figure 2. Butterfly diagram of the magnetic field. Solid lines rep-

resent positive polarity, dotted lines negative polarity. The

contour levels correspond to ±0.5, ±1, ±2, ±4, ±8 and ±16G

(Stenflo, 1972).

Figure 3. Solar large-scale magnetic configurations through two consecu-

tive solar cycles 19 and 20, predicted in the hypothesis of a

'•"S solar magnetic dipole, rotating around, an axis perpendicular

to the rotation axis of the sun, with a period of 22 years.
>

Configurations of the solar photospheric magnetic field after

sunspot maximum and around sunspot minimum (Altschuler et al.,

1971) agree with the observations.

Figure 4. Latitude distribution of prominences. The contour levels

correspond to the prominence areas 50, 100, 150, 200, 250, 300,

350, 400 and 450 units.

Figure 5. The coefficients computed cross-correlating interplanetary

polarity data and a sinusoidal test-function with a period of

27 days are plotted in function of the time lag varying from

0 to 26 days. In each row, the set of cross-correlation coeffi-

"* cients, relative to a period, 27 Bartels rotation long, are

reported twice. Positive cross-correlation coefficients cor-
V

respond to dashed areas. On the left, the number of the first
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Bartels rotation of the period of date, used to compute the

values of the respective row, is reported. The horizontal

lines, separate consecutive solar cycles.

Figure 6. Photospheric magnetic sector boundaries proposed by Svalgaard,

Wilcox and Duvall (1974) before, during and after the reversal

of the polar magnetic fields of the sun, during solar cycle

20. For each phase of the solar cycle reported, the two kinds

of boundaries ( + >-) and (-,+) are reported, in the case of a

simple two-sector structure. A dipole, with magnetic axis

inclined with respect to the rotational axis of the sun, is

suggested by the geometry of the sectors (a, d), which, con-

nected, separate the solar surface into two opposite polarity

regions. Stages (b, e) and (c, f) can be achieved by the

rotation of the magnetic dipole (a, b).

20



I960.O-1

1962.0- •

1964.0-

1966.0-

1968.0-

I97O.O-

360 I8O 0°
HELIOGRAPHIC LONGITUDE

Figure 1

21



UJ
Q
13

I
a.
a:
o
g
iu
i

-90 i i i i i i ni i i r
I960 1962 1964 1966 1968

Figure 2

22



SOLAR ROTATING MAGNETIC DIPOLE

CYCLE 19

MIN

CYCLE 20

MIN

f

N

I
s

Figure 3

23



I I I I I 1 L

I960 1962 1964 1966 1968

Figure 4

24



CO 00

Figure 5

25



g

X
<

LU

IE

Figure 6

26



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 REPORT NUMBER
SUIPR REPORT No. 570

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

SOLAR ROTATING MAGNETIC DIPOLE?
6. TYPE OF REPORT & PERIOD COVERED

Scientific Technical

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(»)

Ester Antonucci
8. CONTRACT OR GRANT NUMBERU)

N00014-67-A-0112-00 68

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Institute for Plasma Research
Stanford University
Stanford, California 94305

10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS
Stanford Electronics Laboratories, Director
Stanford University
Stanford, California 94305

12. REPORT DATE

26 April 1974
13. NO. OF PAGES

26
16. SECURITY CLASS, (of this report)

Unclassified
14. MONITORING AGENCY NAME & ADDRESS (if diff. from Controlling Office)

1B». DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this report)

This document has been approved for public release and sale; its distribution
is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report)

18. SUPPLEMENTARY NOTES

TECH; OTHER

19. KEY WORDS (Continue on revert* tide if necessary and identify by block number)

Solar magnetic cycle
Solar magnetic field
Interplanetary magnetic field

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

A magnetic dipole rotating around an axis perpendicular to the rotation axis
of the sun can account for the characteristics of the surface large-scale
solar magnetic fields through the solar cycle. The polarity patterns of the
interplanetary magnetic field, predictable from this model, agree with the
observed interplanetary magnetic sector structure.

nn FORM
l«*e\«f 1 JAN 73

EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)


