2,603 research outputs found
Antimatter research in Space
Two of the most compelling issues facing astrophysics and cosmology today are
to understand the nature of the dark matter that pervades the universe and to
understand the apparent absence of cosmological antimatter. For both issues,
sensitive measurements of cosmic-ray antiprotons and positrons, in a wide
energy range, are crucial. Many different mechanisms can contribute to
antiprotons and positrons production, ranging from conventional reactions up to
exotic processes like neutralino annihilation. The open problems are so
fundamental (i.e.: is the universe symmetric in matter and antimatter ?) that
experiments in this field will probably be of the greatest interest in the next
years. Here we will summarize the present situation, showing the different
hypothesis and models and the experimental measurements needed to lead to a
more established scenario.Comment: 10 pages, 7 figures, Invited talk at the 18th European Cosmic Ray
Symposium, Moscow, July 2002, submitted to Journal of Physics
The primordial environment of super massive black holes: large scale galaxy overdensities around QSOs with LBT
We investigated the presence of galaxy overdensities around four
QSOs, namely SDSS J1030+0524 (z = 6.28), SDSS J1148+5251 (z = 6.41), SDSS
J1048+4637 (z = 6.20) and SDSS J1411+1217 (z = 5.95), through deep -, -
and - band imaging obtained with the wide-field () Large
Binocular Camera (LBC) at the Large Binocular Telescope (LBT). We adopted
color-color selections within the vs plane to identify samples of
-band dropouts at the QSO redshift and measure their relative abundance and
spatial distribution in the four LBC fields, each covering
physical Mpc at . The same selection criteria were then applied to
-band selected sources in the 1 deg Subaru-XMM Newton Deep Survey
to derive the expected number of dropouts over a blank LBC-sized field
(0.14 deg). The four observed QSO fields host a number of candidates
larger than what is expected in a blank field. By defining as -band dropouts
objects with and undetected in the -band, we found
16, 10, 9, 12 dropouts in SDSS J1030+0524, SDSS J1148+5251, SDSS J1048+4637,
and SDSS J1411+1217, respectively, whereas only 4.3 such objects are expected
over a 0.14 deg blank field. This corresponds to overdensity significances
of 3.3, 1.9, 1.7, 2.5, respectively. By considering the total number of
dropouts in the four LBC fields and comparing it with what is expected in four
blank fields of 0.14 deg each, we find that high-z QSOs reside in overdense
environments at the level. This is the first direct and unambiguous
measurement of the large scale structures around QSOs. [shortened]Comment: 12 pages, 8 figures. Accepted for publication in A&
XEN glaucoma treatment system in the management of refractory glaucomas: a short review on trial data and potential role in clinical practice
The recent development of new devices that are significantly less invasive, collectively termed minimally invasive glaucoma surgery, offers new perspective of intraocular pressure reduction with less risk, short operating times, and rapid recovery. The aim of this work is to provide a panoramic review of the currently published clinical data to assess the potential role of XEN gel stent (Allergan PLC, Irvine, CA, USA) in the management of glaucoma, which is the only filtering minimally invasive glaucoma surgery device that allows the subconjunctival filtration. The ab interno placement of the XEN gel stent offers an alternative for lowering intraocular pressure in refractory glaucoma as a final step, and in patients intolerant to medical therapy as an early surgical approach with minimum conjunctival tissue disruption, restricted flow to avoid hypotony, and long-term safety
Astrophysical Implications of a Visible Dark Matter Sector from a Custodially Warped-GUT
We explore, within the warped extra dimensional framework, the possibility of
finding anti-matter signals in cosmic rays (CRs) from dark matter (DM)
annihilation. Exchange of order 100 GeV radion, an integral part of our setup,
generically results in Sommerfeld enhancement of the annihilation rate for TeV
DM mass. No dark sector is required to obtain boosted annihilation cross
sections. A mild hierarchy between the radion and DM masses can be natural due
to the pseudo-Goldstone boson nature of the radion. Implications of Sommerfeld
enhancement in warped grand unified theory (GUT) models, where proton stability
implies a DM candidate, are studied. We show, via partially unified Pati-Salam
group, how to incorporate a custodial symmetry for Z->b\bar b into the GUT
framework such that a few TeV Kaluza-Klein (KK) mass scale is allowed by
precision tests. The model with smallest fully unified SO(10) representation
allows us to decouple the DM from the electroweak sector. Thus, a correct DM
relic density is obtained and direct detection bounds are satisfied. Looking at
robust CR observables, a possible future signal in the \bar p / p flux ratio is
found. We show how to embed a similar custodial symmetry for the right handed
tau, allowing it to be strongly coupled to KK particles. Such a scenario might
lead to observed signal in CR positrons; however, the DM candidate in this case
can not constitute all of the DM in the universe. Independently of the above,
the strong coupling between KK particles and tau's can lead to striking LHC
signals.Comment: 53 pages, 9 figure
Gamma-ray observations of Cygnus X-1 above 100 MeV in the hard and soft states
We present the results of multi-year gamma-ray observations by the AGILE
satellite of the black hole binary system Cygnus X-1. In a previous
investigation we focused on gamma-ray observations of Cygnus X-1 in the hard
state during the period mid-2007/2009. Here we present the results of the
gamma-ray monitoring of Cygnus X-1 during the period 2010/mid-2012 carried out
for which includes a remarkably prolonged `soft state' phase (June 2010 -- May
2011). Previous 1--10 MeV observations of Cyg X-1 in this state hinted at a
possible existence of a non-thermal particle component with substantial
modifications of the Comptonized emission from the inner accretion disk. Our
AGILE data, averaged over the mid-2010/mid-2011 soft state of Cygnus X-1,
provide a significant upper limit for gamma-ray emission above 100 MeV of
F_soft < 20 x 10^{-8} ph/cm^2/s, excluding the existence of prominent
non-thermal emission above 100 MeV during the soft state of Cygnus X-1. We
discuss theoretical implications of our findings in the context of high-energy
emission models of black hole accretion. We also discuss possible gamma-ray
flares detected by AGILE. In addition to a previously reported episode observed
by AGILE in October 2009 during the hard state, we report a weak but important
candidate for enhanced emission which occurred at the end of June 2010
(2010-06-30 10:00 - 2010-07-02 10:00 UT) exactly in coincidence with a
hard-to-soft state transition and before an anomalous radio flare. An appendix
summarizes all previous high-energy observations and possible detections of
Cygnus X-1 above 1 MeV.Comment: 16 pages, 12 figures, 1 table, accepted for publication in Ap
Recommended from our members
Phenotypic and functional characterization of corneal endothelial cells during in vitro expansion.
The advent of cell culture-based methods for the establishment and expansion of human corneal endothelial cells (CEnC) has provided a source of transplantable corneal endothelium, with a significant potential to challenge the one donor-one recipient paradigm. However, concerns over cell identity remain, and a comprehensive characterization of the cultured CEnC across serial passages has not been performed. To this end, we compared two established CEnC culture methods by assessing the transcriptomic changes that occur during in vitro expansion. In confluent monolayers, low mitogenic culture conditions preserved corneal endothelial cell state identity better than culture in high mitogenic conditions. Expansion by continuous passaging induced replicative cell senescence. Transcriptomic analysis of the senescent phenotype identified a cell senescence signature distinct for CEnC. We identified activation of both classic and new cell signaling pathways that may be targeted to prevent senescence, a significant barrier to realizing the potential clinical utility of in vitro expansion
- …