8,797 research outputs found

    Parametrization of the Driven Betatron Oscillation

    Full text link
    An AC dipole is a magnet which produces a sinusoidally oscillating dipole field and excites coherent transverse beam motion in a synchrotron. By observing this coherent motion, the optical parameters can be directly measured at the beam position monitor locations. The driven oscillation induced by an AC dipole will generate a phase space ellipse which differs from that of the free oscillation. If not properly accounted for, this difference can lead to a misinterpretation of the actual optical parameters, for instance, of 6% or more in the cases of the Tevatron, RHIC, or LHC. The effect of an AC dipole on the linear optics parameters is identical to that of a thin lens quadrupole. By introducing a new amplitude function to describe this new phase space ellipse, the motion produced by an AC dipole becomes easier to interpret. Beam position data taken under the influence of an AC dipole, with this new interpretation in mind, can lead to more precise measurements of the normal Courant-Snyder parameters. This new parameterization of the driven motion is presented and is used to interpret data taken in the FNAL Tevatron using an AC dipole.Comment: 8 pages, 8 figures, and 1 tabl

    First Principles Study of Work Functions of Double Wall Carbon Nanotubes

    Full text link
    Using first-principles density functional calculations, we investigated work functions (WFs) of thin double-walled nanotubes (DWNTs) with outer tube diameters ranging from 1nm to 1.5nm. The results indicate that work function change within this diameter range can be up to 0.5 eV, even for DWNTs with same outer diameter. This is in contrast with single-walled nanotubes (SWNTs) which show negligible WF change for diameters larger than 1nm. We explain the WF change and related charge redistribution in DWNTs using charge equilibration model (CEM). The predicted work function variation of DWNTs indicates a potential difficulty in their nanoelectronic device applications.Comment: 11 pages, 3 figures, to appear as rapid communication on Physical Review

    Negative modes and the thermodynamics of Reissner-Nordstr\"om black holes

    Full text link
    We analyse the problem of negative modes of the Euclidean section of the Reissner-Nordstr\"om black hole in four dimensions. We find analytically that a negative mode disappears when the specific heat at constant charge becomes positive. The sector of perturbations analysed here is included in the canonical partition function of the magnetically charged black hole. The result obeys the usual rule that the partition function is only well-defined when there is local thermodynamical equilibrium. We point out the difficulty in quantising Einstein-Maxwell theory, where the so-called conformal factor problem is considerably more intricate. Our method, inspired by hep-th/0608001, allows us to decouple the divergent gauge volume and treat the metric perturbations sector in a gauge-invariant way.Comment: 24 pages, 1 figure; v2 minor changes to fit published versio

    Initial state maximizing the nonexponentially decaying survival probability for unstable multilevel systems

    Full text link
    The long-time behavior of the survival probability for unstable multilevel systems that follows the power-decay law is studied based on the N-level Friedrichs model, and is shown to depend on the initial population in unstable states. A special initial state maximizing the asymptote of the survival probability at long times is found and examined by considering the spontaneous emission process for the hydrogen atom interacting with the electromagnetic field.Comment: 5 pages, 1 table. Accepted for publication in Phys. Rev.

    Upper limits of particle emission from high-energy collision and reaction near a maximally rotating Kerr black hole

    Full text link
    The center-of-mass energy of two particles colliding near the horizon of a maximally rotating black hole can be arbitrarily high if the angular momentum of either of the incident particles is fine-tuned, which we call a critical particle. We study particle emission from such high-energy collision and reaction in the equatorial plane fully analytically. We show that the unconditional upper limit of the energy of the emitted particle is given by 218.6% of that of the injected critical particle, irrespective of the details of the reaction and this upper limit can be realized for massless particle emission. The upper limit of the energy extraction efficiency for this emission as a collisional Penrose process is given by 146.6%, which can be realized in the collision of two massive particles with optimized mass ratio. Moreover, we analyze perfectly elastic collision, Compton scattering, and pair annihilation and show that net positive energy extraction is really possible for these three reactions. The Compton scattering is most efficient among them and the efficiency can reach 137.2%. On the other hand, our result is qualitatively consistent with the earlier claim that the mass and energy of the emitted particle are at most of order the total energy of the injected particles and hence we can observe neither super-heavy nor super-energetic particles.Comment: 22 pages, 3 figures, typos corrected, reference updated, accepted for publication in Physical Review D, typos correcte

    Quasienergy anholonomy and its application to adiabatic quantum state manipulation

    Full text link
    The parametric dependence of a quantum map under the influence of a rank-1 perturbation is investigated. While the Floquet operator of the map and its spectrum have a common period with respect to the perturbation strength λ\lambda, we show an example in which none of the quasienergies nor the eigenvectors obey the same period: After a periodic increment of λ\lambda, the quasienergy arrives at the nearest higher one, instead of the initial one, exhibiting an anholonomy, which governs another anholonomy of the eigenvectors. An application to quantum state manipulations is outlined.Comment: 10pages, 1figure. To be published in Phys. Rev. Lett

    The potential investment impact of improved access to accelerated approval on the development of treatments for low prevalence rare diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over 95% of rare diseases lack treatments despite many successful treatment studies in animal models. To improve access to treatments, the Accelerated Approval (AA) regulations were implemented allowing the use of surrogate endpoints to achieve drug approval and accelerate development of life-saving therapies. Many rare diseases have not utilized AA due to the difficulty in gaining acceptance of novel surrogate endpoints in untreated rare diseases.</p> <p>Methods</p> <p>To assess the potential impact of improved AA accessibility, we devised clinical development programs using proposed clinical or surrogate endpoints for fifteen rare disease treatments.</p> <p>Results</p> <p>We demonstrate that better AA access could reduce development costs by approximately 60%, increase investment value, and foster development of three times as many rare disease drugs for the same investment.</p> <p>Conclusion</p> <p>Our research brings attention to the need for well-defined and practical qualification criteria for the use of surrogate endpoints to allow more access to the AA approval pathway in clinical trials for rare diseases.</p

    Unoccupied topological surface state in Bi2_{2}Te2_{2}Se

    Full text link
    Bias voltage dependent scattering of the topological surface state is studied by scanning tunneling microscopy/spectroscopy for a clean surface of the topological insulator Bi2_2Te2_2Se. A strong warping of constant energy contours in the unoccupied part of the spectrum is found to lead to a spin-selective scattering. The topological surface state persists to higher energies in the unoccupied range far beyond the Dirac point, where it coexists with the bulk conduction band. This finding sheds light on the spin and charge dynamics over the wide energy range and opens a way to designing opto-spintronic devices.Comment: 5 pages, 4 figure

    Excitonic Aharonov-Bohm Effect in Isotopically Pure 70Ge/Si Type-II Quantum Dots

    Full text link
    We report on a magneto-photoluminescence study of isotopically pure 70Ge/Si self-assembled type-II quantum dots. Oscillatory behaviors attributed to the Aharonov-Bohm effect are simultaneously observed for the emission energy and intensity of excitons subject to an increasing magnetic field. When the magnetic flux penetrates through the ring-like trajectory of an electron moving around each quantum dot, the ground state of an exciton experiences a change in its angular momentum. Our results provide the experimental evidence for the phase coherence of a localized electron wave function in group-IV Ge/Si self-assembled quantum structures.Comment: 4 pages, 4 figure
    corecore