53 research outputs found

    Enhanced Fear Expression in a Psychopathological Mouse Model of Trait Anxiety: Pharmacological Interventions

    Get PDF
    The propensity to develop an anxiety disorder is thought to be determined by genetic and environmental factors. Here we investigated the relationship between a genetic predisposition to trait anxiety and experience-based learned fear in a psychopathological mouse model. Male CD-1 mice selectively bred for either high (HAB), or normal (NAB) anxiety-related behaviour on the elevated plus maze were subjected to classical fear conditioning. During conditioning both mouse lines showed increased fear responses as assessed by freezing behaviour. However, 24 h later, HAB mice displayed more pronounced conditioned responses to both a contextual or cued stimulus when compared with NAB mice. Interestingly, 6 h and already 1 h after fear conditioning, freezing levels were high in HAB mice but not in NAB mice. These results suggest that trait anxiety determines stronger fear memory and/or a weaker ability to inhibit fear responses in the HAB line. The enhanced fear response of HAB mice was attenuated by treatment with either the α2,3,5-subunit selective benzodiazepine partial agonist L-838,417, corticosterone or the selective neurokinin-1 receptor antagonist L-822,429. Overall, the HAB mouse line may represent an interesting model (i) for identifying biological factors underlying misguided conditioned fear responses and (ii) for studying novel anxiolytic pharmacotherapies for patients with fear-associated disorders, including post-traumatic stress disorder and phobias

    Social Competitiveness and Plasticity of Neuroendocrine Function in Old Age: Influence of Neonatal Novelty Exposure and Maternal Care Reliability

    Get PDF
    Early experience is known to have a profound impact on brain and behavioral function later in life. Relatively few studies, however, have examined whether the effects of early experience remain detectable in the aging animal. Here, we examined the effects of neonatal novelty exposure, an early stimulation procedure, on late senescent rats' ability to win in social competition. During the first 3 weeks of life, half of each litter received daily 3-min exposures to a novel environment while the other half stayed in the home cage. At 24 months of age, pairs of rats competed against each other for exclusive access to chocolate rewards. We found that novelty-exposed rats won more rewards than home-staying rats, indicating that early experience exerts a life-long effect on this aspect of social dominance. Furthermore, novelty-exposed but not home-staying rats exhibited habituation of corticosterone release across repeated days of social competition testing, suggesting that early experience permanently enhances plasticity of the stress response system. Finally, we report a surprising finding that across individual rat families, greater effects of neonatal novelty exposure on stress response plasticity were found among families whose dams provided more reliable, instead of a greater total quantity of, maternal care

    The endogenous cannabinoid anandamide has effects on motivation and anxiety that are revealed by fatty acid amide hydrolase (FAAH) inhibition

    No full text
    Converging evidence suggests that the endocannabinoid. system is an important constituent of neuronal substrates involved in brain reward processes and emotional responses to stress. Here, we evaluated motivational effects of intravenously administered anandamide, an endogenous ligand for cannabinoid CB1-receptors, in Sprague-Dawley rats, using a place-conditioning procedure in which drugs abused by humans generally produce conditioned place preferences (reward). Anandamide (0.03-3 mg/kg intravenous) produced neither conditioned place preferences nor aversions. However, when rats were pre-treated with the fatty acid amide hydrolase (FAAH) inhibitor URB597 (cyclohexyl carbamic acid 3'-carbamoyl-3-yl ester; 0.3 mg/kg intraperitoneal), which blocks anandamide's metabolic degradation, anandamide produced dose-related conditioned place aversions. In contrast, URB597 alone showed no motivational effects. Like URB597 plus anandamide, the synthetic CB1-receptor ligand WIN 55,212-2 (50-300 mu g/kg, intravenous) produced dose-related conditioned place aversions. When anxiety-related effects of anandamide and URB597 were evaluated in a light/dark box, both a low anandamide dose (0.3 mg/kg) and URB597 (0.1 and 0.3 mg/kg) produced anxiolytic effects when given alone, but produced anxiogenic effects when combined. A higher dose of anandamide (3 mg/kg) produced anxiogenic effects and depressed locomotor activity when given alone and these effects were potentiated after URB597 treatment. Finally, anxiogenic effects of anandamide plus URB597 and development of place aversions with URB597 plus anandamide were prevented by the CBI-receptor antagonist AM251 (3 mg/kg intraperitoneal). Thus, additive interactions between the effects of anandamide on brain reward processes and on anxiety may account for its aversive effects when intravenously administered during FAAH inhibition with URB597. (c) 2007 Elsevier Ltd. All rights reserved

    Inhibition of anandamide hydrolysis by cyclohexyl carbamic acid 3′-carbamoyl-3-yl ester (URB597) reverses abuse-related behavioral and neurochemical effects of nicotine in rats (Journal of Pharmacology and Experimental Therapeutics (2008) 327, (482-490))

    No full text
    Emerging evidence suggests that the rewarding, abuse-related effects of nicotine are modulated by the endocannabinoid system of the brain. For example, pharmacological blockade or genetic deletion of cannabinoid CB1 receptors can reduce or eliminate many abuse-related behavioral and neurochemical effects of nicotine. Furthermore, doses of Δ9-tetrahydrocannabinol (THC) and nicotine that are ineffective when given alone can induce conditioned place preference when given together. These previous studies have used systemically-administered CB1-receptor agonists and antagonists and gene deletion techniques, which affect cannabinoid CB1 receptors throughout the brain. A more functionally selective way to alter endocannabinoid activity is to inhibit fatty acid amide hydrolase (FAAH), thereby magnifying and prolonging the effects of only the endocannabinoid anandamide (AEA) when and where it is synthesized and released on demand. Here we combined behavioral and neurochemical approaches to evaluate whether the FAAH inhibitor cyclohexyl carbamic acid 3’-carbamoyl-3-yl ester (URB597) could alter the abuse-related effects of nicotine in rats. We found that URB597, at a dose (0.3 mg/kg) that had no behavioral effects by itself, prevented development of nicotine-induced conditioned place preference (CPP) and acquisition of nicotine self-administration. URB597 also reduced nicotine-induced reinstatement in both CPP and self-administration models of relapse. Furthermore, in vivo microdialysis showed that URB597 reduced nicotine-induced dopamine elevations in the nucleus accumbens shell, the terminal area of the brain’s mesolimbic reward system. These findings suggest that FAAH inhibition can counteract the addictive properties of nicotine and that FAAH may serve as a new target for development of medications for treatment of tobacco dependence

    Inhibition of anandamide hydrolysis by cyclohexyl carbamic acid 3'-carbamoyl-3-yl ester (URB597) reverses abuse-related behavioral and neurochemical effects of nicotine in rats

    No full text
    Emerging evidence suggests that the rewarding, abuse-related effects of nicotine are modulated by the endocannabinoid system of the brain. For example, pharmacological blockade or genetic deletion of cannabinoid CB(1) receptors can reduce or eliminate many abuse-related behavioral and neurochemical effects of nicotine. Furthermore, doses of Delta(9)-tetrahydrocannabinol and nicotine that are ineffective when given alone can induce conditioned place preference when given together. These previous studies have used systemically administered CB(1) receptor agonists and antagonists and gene deletion techniques, which affect cannabinoid CB(1) receptors throughout the brain. A more functionally selective way to alter endocannabinoid activity is to inhibit fatty acid amide hydrolase (FAAH), thereby magnifying and prolonging the effects of the endocannabinoid anandamide only when and where it is synthesized and released on demand. Here, we combined behavioral and neurochemical approaches to evaluate whether the FAAH inhibitor URB597 (cyclohexyl carbamic acid 3'-carbamoyl-3-yl ester) could alter the abuse-related effects of nicotine in rats. We found that URB597, at a dose (0.3 mg/kg) that had no behavioral effects by itself, prevented development of nicotine-induced conditioned place preference (CPP) and acquisition of nicotine self-administration. URB597 also reduced nicotine-induced reinstatement in both CPP and self-administration models of relapse. Furthermore, in vivo microdialysis showed that URB597 reduced nicotine-induced dopamine elevations in the nucleus accumbens shell, the terminal area of the brain's mesolimbic reward system. These findings suggest that FAAH inhibition can counteract the addictive properties of nicotine and that FAAH may serve as a new target for development of medications for treatment of tobacco dependence

    Context-dependent effects of CB1 cannabinoid gene disruption on anxiety-like and social behaviour in mice.

    No full text
    Contrasting data were reported regarding the effects of cannabinoids on anxiety and social behaviour in both animals and humans. The cognitive effects of cannabinoids and their interactions with the HPA-axis raise the possibility that cannabinoid effects are context but not behaviour specific. To assess this hypothesis, we submitted CB1 receptor knock-out (CB1-KO) and wild-type (WT) mice to tests, which involved similar behaviours, but the behavioural context was different. The elevated plus-maze test was performed under less and more anxiogenic conditions, i.e. under low and high light, respectively. We also compared the social behaviour of the two genotypes in the resident/intruder and social interaction tests. Both tests represent a social challenge and induce similar behaviours, but involve different contexts. The behaviour of CB1-KO and WT mice was similar under low light, but CB1 gene disruption increased anxiety-like behaviour under the high light condition. CB1 gene disruption promoted aggressive behaviour in the home-cage, whereas it inhibited social behaviour in the unfamiliar cage. Thus, the anxiogenic-like effect was restricted to the more stressful unfamiliar environment. These data suggest that the effects of CB1 gene disruption were context and not behaviour specific. Novelty stress resulted in higher ACTH levels in CB1-KOs than in WTs, which suggests that context dependency occurred in conjunction with an altered HPA axis function. The present data at least partly explain contrasting effects of cannabinoids in different contexts as well as in different species and strains that show differential stress responses and coping strategies.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tFLWINinfo:eu-repo/semantics/publishe

    Arrival date and territorial behavior are associated with corticosterone metabolite levels in a migratory bird

    No full text
    International audienceGlucocorticoids promote the mobilization of energy stores and they may facilitate the expression of energetically expensive functions. Early arrival on the breeding grounds in migratory species and territorial competition are energetically demanding activities that may be supported by elevated baseline glucocorticoid levels. Here, we evaluated the associations between the baseline levels of excreted corticosterone (CORT) metabolites of male Pied Flycatchers () just after arriving on their breeding area and timing of arrival, considering ornamental traits indicative of social status, like forehead patch size and black plumage coloration, as well as heat shock protein levels (HSP60). We observed a positive association of CORT metabolites with HSP60 levels, which are synthesized under several environmental challenges affecting cell homeostasis. Our data showed a negative association between arrival date and CORT metabolite levels, possibly as a result of the higher energetic demands imposed by the hard environmental conditions experienced at the time of an early arrival after migration. We observed a negative relationship of forehead patch dimensions and CORT metabolite levels, suggesting that dominance is associated with low baseline CORT metabolites. Also, males that expressed a higher degree of territorial behaviour when exposed to a playback song of a conspecific at their nest-box showed higher CORT metabolites upon arrival than males that expressed a lower degree of territorial behavior. This may indicate that elevated baseline CORT metabolite levels may facilitate an intense territorial competition in males. Thus, male–male competition may be a factor affecting observed baseline glucocorticoid levels in migratory birds
    • …
    corecore