1,150 research outputs found

    The census of complex organic molecules in the solar type protostar IRAS16293-2422

    Full text link
    Complex Organic Molecules (COMs) are considered crucial molecules, since they are connected with organic chemistry, at the basis of the terrestrial life. More pragmatically, they are molecules in principle difficult to synthetize in the harsh interstellar environments and, therefore, a crucial test for astrochemical models. Current models assume that several COMs are synthesised on the lukewarm grain surfaces (≳\gtrsim30-40 K), and released in the gas phase at dust temperatures ≳\gtrsim100 K. However, recent detections of COMs in â‰Č\lesssim20 K gas demonstrate that we still need important pieces to complete the puzzle of the COMs formation. We present here a complete census of the oxygen and nitrogen bearing COMs, previously detected in different ISM regions, towards the solar type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Six COMs, out of the 29 searched for, were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. The multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (â‰Č\lesssim30 K) envelope of IRAS16293-2422, with abundances 0.03-2 ×10−10\times 10^{-10}. Our data do not allow to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on the lukewarm grain surfaces. Finally, when considering also other ISM sources, we find a strong correlation over five orders of magnitude, between the methyl formate and dimethyl ether and methyl formate and formamide abundances, which may point to a link between these two couples of species, in cold and warm gas

    Elastic and Raman scattering of 9.0 and 11.4 MeV photons from Au, Dy and In

    Full text link
    Monoenergetic photons between 8.8 and 11.4 MeV were scattered elastically and in elastically (Raman) from natural targets of Au, Dy and In.15 new cross sections were measured. Evidence is presented for a slight deformation in the 197Au nucleus, generally believed to be spherical. It is predicted, on the basis of these measurements, that the Giant Dipole Resonance of Dy is very similar to that of 160Gd. A narrow isolated resonance at 9.0 MeV is observed in In.Comment: 31 pages, 11 figure

    Estimates in Beurling--Helson type theorems. Multidimensional case

    Full text link
    We consider the spaces Ap(Tm)A_p(\mathbb T^m) of functions ff on the mm -dimensional torus Tm\mathbb T^m such that the sequence of the Fourier coefficients f^={f^(k), k∈Zm}\hat{f}=\{\hat{f}(k), ~k \in \mathbb Z^m\} belongs to lp(Zm), 1≀p<2l^p(\mathbb Z^m), ~1\leq p<2. The norm on Ap(Tm)A_p(\mathbb T^m) is defined by ∄f∄Ap(Tm)=∄f^∄lp(Zm)\|f\|_{A_p(\mathbb T^m)}=\|\hat{f}\|_{l^p(\mathbb Z^m)}. We study the rate of growth of the norms ∄eiλφ∄Ap(Tm)\|e^{i\lambda\varphi}\|_{A_p(\mathbb T^m)} as âˆŁÎ»âˆŁâ†’âˆž, λ∈R,|\lambda|\rightarrow \infty, ~\lambda\in\mathbb R, for C1C^1 -smooth real functions φ\varphi on Tm\mathbb T^m (the one-dimensional case was investigated by the author earlier). The lower estimates that we obtain have direct analogues for the spaces Ap(Rm)A_p(\mathbb R^m)

    A spectral line survey in the 2 mm and 1.3 mm windows toward the carbon rich envelope of IRC +10216

    Full text link
    We present the results of our spectral line surveys in the 2 mm and 1.3 mm windows toward the carbon rich envelope of IRC +10216. Totally 377 lines are detected, among which 360 lines are assigned to 57 known molecules (including 29 rare isotopomers and 2 cyclic isomers). Only 17 weak lines remain unidentified. Rotational lines of isotopomers 13CCH and HN13C are detected for the first time in IRC +10216. The detection of the formaldehyde lines in this star is also confirmed. Possible abundance difference among the three 13C substituted isotopic isomers of HC3N is reported. Isotopic ratios of C and O are confirmed to be non-solar while those of S and Si to be nearly solar. Column densities have been estimated for 15 molecular species. Modified spectroscopic parameters have been calculated for NaCN, Na13CN, KCN and SiC2. Transition frequencies from the present observations were used to improve the spectroscopic parameters of Si13CC, 29SiC2 and 30SiC2.Comment: 17 pages of text, 18 pages of 14 tables, 35 pages of 4 figures, a typo corrected in Abstrac

    Shedding light on the formation of the pre-biotic molecule formamide with ASAI

    Get PDF
    Formamide (NH2CHO) has been proposed as a pre-biotic precursor with a key role in the emergence of life on Earth. While this molecule has been observed in space, most of its detections correspond to high-mass star-forming regions. Motivated by this lack of investigation in the low-mass regime, we searched for formamide, as well as isocyanic acid (HNCO), in 10 low- and intermediate-mass pre-stellar and protostellar objects. The present work is part of the IRAM Large Programme ASAI (Astrochemical Surveys At IRAM), which makes use of unbiased broadband spectral surveys at millimetre wavelengths. We detected HNCO in all the sources and NH2CHO in five of them. We derived their abundances and analysed them together with those reported in the literature for high-mass sources. For those sources with formamide detection, we found a tight and almost linear correlation between HNCO and NH2CHO abundances, with their ratio being roughly constant -between 3 and 10- across 6 orders of magnitude in luminosity. This suggests the two species are chemically related. The sources without formamide detection, which are also the coldest and devoid of hot corinos, fall well off the correlation, displaying a much larger amount of HNCO relative to NH2CHO. Our results suggest that, while HNCO can be formed in the gas phase during the cold stages of star formation, NH2CHO forms most efficiently on the mantles of dust grains at these temperatures, where it remains frozen until the temperature rises enough to sublimate the icy grain mantles. We propose hydrogenation of HNCO as a likely formation route leading to NH2CHO.Comment: 26 pages, 9 figures. Accepted by Monthly Notices of the Royal Astronomical Societ

    Complex organics in IRAS 4A revisited with ALMA and PdBI: Striking contrast between two neighbouring protostellar cores

    Full text link
    We used the Atacama Large (sub-)Millimeter Array (ALMA) and the IRAM Plateau de Bure Interferometer (PdBI) to image, with an angular resolution of 0.5â€Čâ€Č'' (120 au) and 1â€Čâ€Č'' (235 au), respectively, the emission from 11 different organic molecules in the protostellar binary NGC1333 IRAS 4A. We clearly disentangled A1 and A2, the two protostellar cores present. For the first time, we were able to derive the column densities and fractional abundances simultaneously for the two objects, allowing us to analyse the chemical differences between them. Molecular emission from organic molecules is concentrated exclusively in A2 even though A1 is the strongest continuum emitter. The protostellar core A2 displays typical hot corino abundances and its deconvolved size is 70 au. In contrast, the upper limits we placed on molecular abundances for A1 are extremely low, lying about one order of magnitude below prestellar values. The difference in the amount of organic molecules present in A1 and A2 ranges between one and two orders of magnitude. Our results suggest that the optical depth of dust emission at these wavelengths is unlikely to be sufficiently high to completely hide a hot corino in A1 similar in size to that in A2. Thus, the significant contrast in molecular richness found between the two sources is most probably real. We estimate that the size of a hypothetical hot corino in A1 should be less than 12 au. Our results favour a scenario in which the protostar in A2 is either more massive and/or subject to a higher accretion rate than A1, as a result of inhomogeneous fragmentation of the parental molecular clump. This naturally explains the smaller current envelope mass in A2 with respect to A1 along with its molecular richness.Comment: Accepted in Astronomy and Astrophysic

    Hormones and temporal components of speech: sex differences and effects of menstrual cyclicity on speech

    Get PDF
    Voice onset time (VOT) is a salient acoustic parameter of speech which signals the “voiced” and “voiceless” status of plosives in English (e.g. the initial sound in ‘bat’ vs. the initial sound in ‘pat’). As a micro-temporal acoustic parameter, VOT may be sensitive to changes in hormones which may affect the neuromuscular systems involved in speech production. This study adopted a novel approach by investigating the effects of menstrual cycle phase and sex on VOT. VOT data representing the 6 plosives of English (/p b t d k g/) were examined for 7 women (age 20-23 years) at two phases of the menstrual cycle (day 18-25: High Estrogen and Progesterone; day 2-5: Low Estrogen and Progesterone). Results indicated that menstrual cycle phase had a significant interaction with the identity of the plosive (F (5,30) = 5.869, P .05), or the contrast between voiced and voiceless cognates (F (1,10) = .407, P > .05). In contrast, the high hormone phase VOT samples displayed significant plosive by sex interactions (F (5,50) = 4.442, P < .005). In addition, significant sex differences were found for the contrasts between cognate voiced and voiceless plosives (F (1,10) = 5.019, P < .05); the women displayed a more marked voiced/voiceless contrast. The findings suggest that ovarian hormones play some role in shaping some temporal components of speech

    Vertical Structure of the Transition Zone from Infalling Rotating Envelope to Disk in the Class 0 Protostar, IRAS04368+2557

    Full text link
    We have resolved for the first time the radial and vertical structure of the almost edge-on envelope/disk system of the low-mass Class 0 protostar L1527. For that, we have used ALMA observations with a spatial resolution of 0.25â€Čâ€Č^{\prime\prime}×\times0.13â€Čâ€Č^{\prime\prime} and 0.37â€Čâ€Č^{\prime\prime}×\times0.23â€Čâ€Č^{\prime\prime} at 0.8 mm and 1.2 mm, respectively. The L1527 dust continuum emission has a deconvolved size of 78 au ×\times 21 au, and shows a flared disk-like structure. A thin infalling-rotating envelope is seen in the CCH emission outward of about 150 au, and its thickness is increased by a factor of 2 inward of it. This radius lies between the centrifugal radius (200 au) and the centrifugal barrier of the infalling-rotating envelope (100 au). The gas stagnates in front of the centrifugal barrier and moves toward vertical directions. SO emission is concentrated around and inside the centrifugal barrier. The rotation speed of the SO emitting gas is found to be decelerated around the centrifugal barrier. A part of the angular momentum could be extracted by the gas which moves away from the mid-plane around the centrifugal barrier. If this is the case, the centrifugal barrier would be related to the launching mechanism of low velocity outflows, such as disk winds

    Lognormal scale invariant random measures

    Full text link
    In this article, we consider the continuous analog of the celebrated Mandelbrot star equation with lognormal weights. Mandelbrot introduced this equation to characterize the law of multiplicative cascades. We show existence and uniqueness of measures satisfying the aforementioned continuous equation; these measures fall under the scope of the Gaussian multiplicative chaos theory developed by J.P. Kahane in 1985 (or possibly extensions of this theory). As a by product, we also obtain an explicit characterization of the covariance structure of these measures. We also prove that qualitative properties such as long-range independence or isotropy can be read off the equation.Comment: 31 pages; Probability Theory and Related Fields (2012) electronic versio
    • 

    corecore