6,339 research outputs found

    Memoria compartida

    Get PDF

    Understanding the Hamiltonian Function through the Geometry of Partial Legendre Transforms

    Full text link
    The relationship between the Hamiltonian and Lagrangean functions in analytical mechanics is a type of duality. The two functions, while distinct, are both descriptive functions encoding the behavior of the same dynamical system. One difference is that the Lagrangean naturally appears as one investigates the fundamental equation of classical dynamics. It is not that way for the Hamiltonian. The Hamiltonian comes after Lagrange's equations have been fully formed, most commonly through a Legendre transform of the Lagrangean function. We revisit the Legendre transform approach and offer a more refined geometrical interpretation than what is commonly shown

    Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems

    Get PDF
    We report an approach based upon vertical cavity surface emitting lasers (VCSELs) to reproduce optically different behaviors exhibited by biological neurons but on a much faster timescale. The technique proposed is based on the polarization switching and nonlinear dynamics induced in a single VCSEL under polarized optical injection. The particular attributes of VCSELs and the simple experimental configuration used in this work offer prospects of fast, reconfigurable processing elements with excellent fan-out and scaling potentials for use in future computational paradigms and artificial neural networks. © 2012 American Institute of Physics

    Pattern Recognition for a Flight Dynamics Monte Carlo Simulation

    Get PDF
    The design, analysis, and verification and validation of a spacecraft relies heavily on Monte Carlo simulations. Modern computational techniques are able to generate large amounts of Monte Carlo data but flight dynamics engineers lack the time and resources to analyze it all. The growing amounts of data combined with the diminished available time of engineers motivates the need to automate the analysis process. Pattern recognition algorithms are an innovative way of analyzing flight dynamics data efficiently. They can search large data sets for specific patterns and highlight critical variables so analysts can focus their analysis efforts. This work combines a few tractable pattern recognition algorithms with basic flight dynamics concepts to build a practical analysis tool for Monte Carlo simulations. Current results show that this tool can quickly and automatically identify individual design parameters, and most importantly, specific combinations of parameters that should be avoided in order to prevent specific system failures. The current version uses a kernel density estimation algorithm and a sequential feature selection algorithm combined with a k-nearest neighbor classifier to find and rank important design parameters. This provides an increased level of confidence in the analysis and saves a significant amount of time

    Tool for Rapid Analysis of Monte Carlo Simulations

    Get PDF
    Designing a spacecraft, or any other complex engineering system, requires extensive simulation and analysis work. Oftentimes, the large amounts of simulation data generated are very difficult and time consuming to analyze, with the added risk of overlooking potentially critical problems in the design. The authors have developed a generic data analysis tool that can quickly sort through large data sets and point an analyst to the areas in the data set that cause specific types of failures. The first version of this tool was a serial code and the current version is a parallel code, which has greatly increased the analysis capabilities. This paper describes the new implementation of this analysis tool on a graphical processing unit, and presents analysis results for NASA's Orion Monte Carlo data to demonstrate its capabilities
    • …
    corecore