22 research outputs found

    MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA-DNA triplex structures

    Get PDF
    Long noncoding RNAs (lncRNAs) regulate gene expression by association with chromatin, but how they target chromatin remains poorly understood. We have used chromatin RNA immunoprecipitation-coupled high-throughput sequencing to identify 276 lncRNAs enriched in repressive chromatin from breast cancer cells. Using one of the chromatin-interacting lncRNAs, MEG3, we explore the mechanisms by which lncRNAs target chromatin. Here we show that MEG3 and EZH2 share common target genes, including the TGF-β pathway genes. Genome-wide mapping of MEG3 binding sites reveals that MEG3 modulates the activity of TGF-β genes by binding to distal regulatory elements. MEG3 binding sites have GA-rich sequences, which guide MEG3 to the chromatin through RNA-DNA triplex formation. We have found that RNA-DNA triplex structures are widespread and are present over the MEG3 binding sites associated with the TGF-β pathway genes. Our findings suggest that RNA-DNA triplex formation could be a general characteristic of target gene recognition by the chromatin-interacting lncRNAs

    Microbial biosurfactants as key multifunctional ingredients for sustainable cosmetics

    Get PDF
    A polar head and an apolar tail chemically characterize surfactants, they show different properties and are categorized by different factors such as head charge and molecular weight. They work by reducing the surface tension between oil and water phases to facilitate the formation of one homogeneous mixture. In this respect, they represent unavoidable ingredients, their main application is in the production of detergents, one of if not the most important categories of cosmetics. Their role is very important, it should be remembered that it was precisely soaps and hygiene that defeated the main infectious diseases at the beginning of the last century. Due to their positive environmental impact, the potential uses of microbial sourced surfactants are actively investigated. These compounds are produced with different mechanisms by microorganisms in the aims to defend themselves from external threats, to improve the mobility in the environment, etc. In the cosmetic field, biosurfactants, restricted in the present work to those described above, can carry high advantages, in comparison to traditional surfactants, especially in the field of sustainable and safer approaches. Besiede this, costs still remain an obsatcle to their diffusion; in this regard, exploration of possible multifunctional actions could help to contain application costs. To highlight their features and possible multifunctional role, on the light of specific biological profiles yet underestimated, we have approached the present review work
    corecore