459 research outputs found

    Entanglement assisted alignment of reference frames using a dense covariant coding

    Get PDF
    We present a procedure inspired by dense coding, which enables a highly efficient transmission of information of a continuous nature. The procedure requires the sender and the recipient to share a maximally entangled state. We deal with the concrete problem of aligning reference frames or trihedra by means of a quantum system. We find the optimal covariant measurement and compute the corresponding average error, which has a remarkably simple close form. The connection of this procedure with that of estimating unitary transformations on qubits is briefly discussed.Comment: 4 pages, RevTeX, Version to appear in PR

    The Glue Around Quarks and the Interquark Potential

    Get PDF
    The quarks of quark models cannot be identified with the quarks of the QCD Lagrangian. We review the restrictions that gauge field theories place on any description of physical (colour) charges. A method to construct charged particles is presented. The solutions are applied to a variety of applications. Their Green's functions are shown to be free of infra-red divergences to all orders in perturbation theory. The interquark potential is analysed and it is shown that the interaction responsible for anti-screening results from the force between two separately gauge invariant constituent quarks. A fundamental limit on the applicability of quark models is identified.Comment: 4 pages, LaTeX, talk given at Montpellier meeting QCD9

    Asymptotic Dynamics in Quantum Field Theory

    Get PDF
    A crucial element of scattering theory and the LSZ reduction formula is the assumption that the coupling vanishes at large times. This is known not to hold for the theories of the Standard Model and in general such asymptotic dynamics is not well understood. We give a description of asymptotic dynamics in field theories which incorporates the important features of weak convergence and physical boundary conditions. Applications to theories with three and four point interactions are presented and the results are shown to be completely consistent with the results of perturbation theory.Comment: 18 pages, 3 figure

    The Structure of Screening in QED

    Get PDF
    The possibility of constructing charged particles in gauge theories has long been the subject of debate. In the context of QED we have shown how to construct operators which have a particle description. In this paper we further support this programme by showing how the screening interactions arise between these charges. Unexpectedly we see that there are two different gauge invariant contributions with opposite signs. Their difference gives the expected result.Comment: 8 pages, LaTe

    Minimal measurements of the gate fidelity of a qudit map

    Get PDF
    We obtain a simple formula for the average gate fidelity of a linear map acting on qudits. It is given in terms of minimal sets of pure state preparations alone, which may be interesting from the experimental point of view. These preparations can be seen as the outcomes of certain minimal positive operator valued measures. The connection of our results with these generalized measurements is briefly discussed

    Collective vs local measurements in qubit mixed state estimation

    Get PDF
    We discuss the problem of estimating a general (mixed) qubit state. We give the optimal guess that can be inferred from any given set of measurements. For collective measurements and for a large number NN of copies, we show that the error in the estimation goes as 1/N. For local measurements we focus on the simpler case of states lying on the equatorial plane of the Bloch sphere. We show that standard tomographic techniques lead to an error proportional to 1/N1/41/N^{1/4}, while with our optimal data processing it is proportional to 1/N3/41/N^{3/4}.Comment: 4 pages, 1 figure, minor style changes, refs. adde

    Communication of Spin Directions with Product States and Finite Measurements

    Get PDF
    Total spin eigenstates can be used to intrinsically encode a direction, which can later be decoded by means of a quantum measurement. We study the optimal strategy that can be adopted if, as is likely in practical applications, only product states of NN-spins are available. We obtain the asymptotic behaviour of the average fidelity which provides a proof that the optimal states must be entangled. We also give a prescription for constructing finite measurements for general encoding eigenstates.Comment: 4 pages, minor changes, version to appear in PR
    • …
    corecore