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We present a procedure inspired by dense coding, which enables a highly efficient transmission of informa-
tion of a continuous nature. The procedure requires the sender and the recipient to share a maximally entangled
state. We deal with the concrete problem of aligning reference frames or trihedra by means of a quantum
system. We find the optimal covariant measurement and compute the corresponding average error, which has
a remarkably simple close form. The connection of this procedure with that of estimating unitary transforma-
tions on qubits is briefly discussed.
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Entanglement has long been recognized as a powerful re-
source in quantum communication. Teleportation[1] and
dense coding[2], for instance, would not be possible without
entanglement. Even when entanglement is not strictly neces-
sary, one frequently runs across situations for which the use
of entangled states, instead of plain product states, provides a
significant improvement. Examples of this can be easily
found in the literature. This Rapid Communication provides
yet another interesting instance, which one could refer to as
dense covariant coding.

Two interesting problems in quantum communication in
which entanglement plays a fundamental role are those of
sending the information that specifies(i) a direction in space,
i.e., a unit vectornW1, or (ii ) three orthogonal ones(a trihe-
dron) n=hnW1,nW2,nW3j. Whereas(i) has been extensively dis-
cussed in the literature[3–5], only recently significant atten-
tion [6–8] has been paid to(ii ). It has been shown that
quantum states can indeed be used to establish a common
reference frame between two parties(Alice and Bob). Thus,
for instance, atoms or a number of spins(throughout this
Rapid Communication we use the word spin as synonym of
spin-1/2 particle) can encode the relative orientation of two
trihedra. The fidelity(or alternatively, the mean-square error
per axis) of the optimal covariant communication protocol
[where covariance refers to the set of signal states being the
orbit of a group; SUs2d for the problem at hand] is now
known for both finite and asymptotically large numberN of
copies of the messenger state.

In this Rapid Communication we show that the intensive
use of entanglement yields a remarkable improvement over
the approaches for aligning spatial frames discussed above.
More specifically, suppose Alice and Bob share a maximally
entangled state. Then, we will show that using a covariant
protocol it is possible to establish a common reference frame
with a mean-square error per axis given byf1−cos 2p / sN
+3dg /3, which behaves as 2p2/ s3N2d. This protocol bears a
great similarity to dense coding as far as it uses entanglement
in the same manner and provides a remarkable improvement
in the transmission of information[9]. Dense coding has
mainly been discussed for discrete signals. However, the in-
formation we are attempting to transmit has an intrinsically
continuous nature: it refers to the relative orientation of Alice

and Bob and, in some situations[3–7,10–12], such informa-
tion cannot be codified by a series of bits. Indeed, a digital
representation of an orientation has no meaning unless it is
referred to a common reference frame. No such frame will be
assumed to be known to both Alice and Bob unless otherwise
stated, though we will use Bob’s to simplify the mathemat-
ics. Hence, the messenger will have to be a quantum system
with intrinsic orientation. More specifically, in this Rapid
Communication we will consider a system of spins.(See
Ref. [13] for another protocol of sending information without
a shared reference frame.) The subject of this Rapid Com-
munication is also related to the important issue of estimat-
ing a unitary operation on qubits[14]. We will come back to
this point in the conclusions.

Suppose both Alice and Bob have a system ofN spins; let
us callHA andHB their respective Hilbert spaces(through-
out this Rapid Communication subscriptsA and B will al-
ways refer to Alice and Bob). Before they start their interga-
lactic journeys, they prepare a state of the form

uFl = o
j

ajuF jl = o
j

aj

Îdj
o

m=−j

j

u jmlAu jmlB, s1d

where j runs from zero toN/2 for N evensfrom 1/2 toN/2
for N oddd, dj =2j +1 is the dimension of the representationj
of SUs2d, and o j aj

2=1. Also before departure, they lock
the orientation of their systems ofN spins to that of their
respective spacecrafts. When they are far apart, they need
to get aligned. Unfortunately, their classical computers
crash and they cannot retrieve the information about the
change of their relative orientation. At this point in time,
the state of Alice’s and Bob’s spins is still given by Eq.
s1d but u jmlA and u jmlB are now referred to Alice’s and
Bob’s reference frames, respectivelysin this presentation
the words spacecraft and reference frame are synonymsd.
Relative to Bob’s reference frame this state can be written
as

uFsgdl ; UAsgd ^ IBuFl, s2d

whereUAsgd belongs to the direct sum of irreducible repre-
sentations of SUs2d andg stands for the three Euler angles
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of the spacial rotation that takes Bob’s reference frame
into Alice’s. With no other resource available, Alice sends
her N spins to Bob, with the hope that he will retrieve
from them the information they need. To do so, he is
allowed to perform generalized collective measurements
on both Alice’s and his own spins, namely, on the state
s2d. Note thatuFl and uFsgdl are maximally entangled in
each j . Note also that in Eq.s1d all of these representa-
tions appear only once, despite the fact that in the
Clebsch-Gordan decomposition ofs1/2d^N they may show
up several times. We will show thatuFl is optimal for the
problem at hand, provided a suitable choice ofaj .0 is
madefsee Eq.s19d belowg.

The quality of the communication strategy can be quanti-
fied by the averaged Holevo’s error[15]

khl = o
r
E dg hsg,grdpsr ugd, s3d

where hsg,g8d=oa=1
3 unWasgd−nWasg8du2; nsgd=hnW1sgd ,nW2sgd,

nW3sgdj defines the frame Alice is transmitting to Bob;nsgrd
=hnW1sgrd ,nW2sgrd ,nW3sgrdj defines the frame Bob guesses from
the outcomer of his measurement; anddg is the invariant
Haar measure of SUs2d. Each one of these trihedra is la-
beled with the parametersg of the rotation which bring
n0=hxW ,yW ,zWj into the desired orientation.psr ugd is the con-
ditional probability of Bob obtaining the outcomer if Al-
ice sendsnsgd. Note thathsg,g8d is related to the character
x1 of the representation1 of SUs2d through hsg,g8d=6
−2x1sgg8−1d. Hence, we just need to computekx1l. From
this, the square error per axis, to which we referred above,
is s3−kx1ld /6. Quantum mechanics tells us that the condi-
tional probability ispsr ugd=kFsgduOruFsgdl, wherehOrj is
a complete set of positive operators such thator Or =I,
namely, the elements of a positive operator valued mea-
surement sPOVMd in the whole subspace ofHA ^ HB
where the signal states belong. Recalling the invariance of
the Haar measure,dg=dsgg8d, we can write

kx1l = o
r
E dg x1sgdukFsgduCrlu2, s4d

where

uCrlkCru ; UA
†sgrd ^ IBOrUAsgrd ^ IB. s5d

This definition implicitly assumes that optimal POVM’s can
always be chosen to have rank 1 elementsf16g. We claim
that sad the states of the forms1d are optimal if the positive
coefficientsaj are properly chosen andsbd and for the opti-
mal POVM one has

uCrl = o
j

uCr
jl = o

j

cjr uF jl; o
r

cjr
2 = dj

2. s6d

To prove claim(a) we borrow from Ref.[14] some results
concerning the estimation of an SUs2d transformation, in
particular, that the optimal state can be chosen to beuFl
=o j ajuV jl, with

uV jl =
1

Îdjnj
o

m=−j

j

o
a=1

nj

u jm;alAu jm;alB s7d

instead of Eq.s1d. Herea labels the differentnj occurrences
of j in the Clebsch-Gordan decomposition ofs1/2d^N. We
next show that, as far as the evaluation of the maximalkx1l
sminimal errord is concerned, we need to consider eachj
only once. Let us defineva

ssd ,s=1, . . . ,nj −1, as the set of
njsnj −1d complex numbersswhich we may regard as the
components ofnj −1 orthogonal unit vectorsd such that
oa va

srd*va
ssd=drs and oa va

ssd=0 fi.e., orthogonal to the
nj-dimensional vectors1,1, . . . ,1dg. We note that the states
uVs,ml=oa va

ssdu jm;alu jm;al satisfy kV juUAsgd ^ IBuVs,ml
=oa va

ssd
Dmm

s jd sgd /Îdjnj =0 for all g, s, and m, where we
have used thatD

mm8
s jd sgd=k jm;auUsgdu jm8 ;al. Hence,uV jl

effectively lives in only one of the irreducible representa-
tions j and it can be chosen as in Eq.s1d without any loss
of generality.

To prove claim(b) we rewrite Eq.(4) as

kx1l = o
r

o
jl

ajal E dg x1sgdkF jF̃luUsgduCr
jC̃r

l l, s8d

where uF jF̃ll= uF jl ^ uF̃ll, the stateuF̃ll is obtained by ap-
plying to uFll time reversal only inHA sanalogous defini-

tions hold foruCr
jC̃r

l ld, andU=UA ^ UA ^ IB ^ IB. By Schur’s
lemma, Eq.s8d is

kx1l =
1

3o
r

o
jl

ajal tr1srr
j

^ r̃r
l d, s9d

where we have definedrr
j =tr BsuCr

jlkF jud, r̃r
l =tr BsuC̃r

l lkF̃lud,
and trBstr1d stands for the partial trace overHB sover the
representation 1 invariant subspace, i.e., tr1O
=om=−1

1 k1muOu1mld. Using the Schwarz inequality we ob-
tain the bound

tr1srr
j

^ r̃r
l d ø Îtr1srr

jrr
j†

^ Ildtr1sI j ^ r̃r
l r̃r

l†d, s10d

whereI j sIld is the identity restricted to the representationj
sld subspace. The equality holds ifuCr

jl=cjr uF jl since this
choice implies rr

j =cjr tr BsuF jlkF jud=cjrI j /dj. To obtain
or cjr

2 =dj
2 one just has to trace Eq.s5d on each irreducible

representation subspace.
With this information we can go back to Eq.(4) and cast

it as

kx1l ø o
r
E dg x1sgdUo

j

ajcjr

dj
x jsgdU2

, s11d

where we have used thatkF juUA
†

^ IBuF jl=x jsgd /dj. To get
rid of the coefficientscjr , note that

o
r

cjrclr ø Îo
r

cjr
2Îo

r

clr
2 = djdl . s12d

The equality holds iff
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cjr = dj
Îcr , s13d

whereorcr =1. Hence

kx1l øE dg x1sgdUo
j

ajx jsgdU2
. s14d

The group integral can be easily performed by recalling the
Clebsch-Gordan seriesx jsgdxlsgd=ok=u j−l u

j+l xksgd and the or-
thogonality of the charactersf17g, namely, edgx jsgdxlsgd
=d jl . The result can be conveniently written as

kx1l ø 1 + atMa. s15d

Hereat=saN/2,aN/2−1,aN/2−2, . . .d is the transpose ofa andM
is the tridiagonal matrix

M =1
0 1 0

1 � �

� 0 1

1 0 1

0 1 z

2 , s16d

wherez=−1sz=0d for N evensoddd. One could also obtain
Eq. s15d directly from Eq.s9d by simply noticing that tr1sI j

^ Ild=3 if j + l ù1ù u j − l u and it vanishes otherwise. The
maximal value of the quadratic form in Eq.s15d is given
by the largest eigenvalue ofM. Its characteristic polyno-
mial is Pnsld=detsM+2lId, where n is the dimension of
M, namely, n=N/2+1sn=N/2+1/2d for N even soddd.
Note that we have defined the eigenvalues ofM as −2ls,
wherels, s=1,2. . . ,n, are the zeroes ofPnsld. The char-
acteristic polynomials obey the simple recurrence relation

Pnsld = 2lPn−1sld − Pn−2sld, s17d

which is that of the Tchebychev polynomialsf18g, and the
initial conditions areP0sld=1 andP1sld=2l+z. Hence, the
solution is Pnsld=Unsld+zUn−1sld, where Unscosud
=sinfsn+1dug /sin u are the Tchebychev polynomials of the
second kind. It is now straightforward to compute the
largest eigenvalue of M. It can be written as
2 cosf2p / sN+3dg and, hence,

kx1lmax= 1 + 2 cos
2p

N + 3
. s18d

One can also verify that the corresponding eigenvector is

aj =
2

ÎN + 3
sin

s2j + 1dp
N + 3

. s19d

Equation(18) gives an upper bound of the actualkx1lmax.
We need to show that this bound is indeed saturated by a
covariant measurement. To do this, we just trace the condi-
tions under which all the(Schwarz) inequalities used in the
proof are saturated. Substituting in Eq.(5) the relationuCrl
=Îcr djuF jl, which follows from Eqs.(6) and (13), we get

Or = cr UAsgrd ^ IB uClkCuUA
†sgrd ^ IB, s20d

whereuCl=o j ,m
Îdju j ,mlAu j ,mlB. But for a rescaling factor

cr, we see that the positive operatorsOr are all obtained by
rotating a fix reference stateuCl. This exhibits the cova-
riance of the scheme. An immediate choice that saturates
the bounds18d is provided by the continuous POVM,

Osgd = UAsgd ^ IB uClkCuUA
†sgd ^ IB. s21d

Using Schur’s lemma, we getedg Osgd=o j IA
j IB

j , whereIA
j

sIB
j d is the identity in Alice’ssBob’sd representationj sub-

space. This is the identity in the Hilbert subspace to which
all signal statesuFsgdl belong. Hence, the infinite sethOsgdj
is a POVM for these signal states.

A continuous POVM, such as Eq.(21), with infinitely
many outcomes is not physically realizable. Hence, it is im-
portant to show that optimal POVMs with a finite number of
outcomes do exist. The most straightforward way of obtain-
ing a finite (though not necessarily minimal) POVM is by
finding a finite sethgrj ,r =1,¯ ,nsJd, of elements of SUs2d
and positive weightshcr8j such that the orthogonality relation

o
r=1

nsJd

cr8 Dmm8
s jd sgrdDnn8

sld*sgrd = CJ

d jldmndm8n8

2j + 1
s22d

holds for all j , l øJ=N/2+1, whereCJ=or=1
nsJd cr8. This dis-

crete version of the standard orthogonality relations of SUs2d
is only valid up to a maximal valueJ. The larger theJ is,
the larger thensJd that must be chosen. There are many
solutions to these equations and we refer the reader to Ref.
f7g for details. Oncehgrj andhcr8j have been computed, we
simply define cr =cr8 /CJ and obtain the desired finite
POVM elements by substituting these values in Eq.s20d.
Equation s22d ensures that Schur’s lemma will work for
the finite sethgr ,crj, thus obtainingor Or =o j IA

j IB
j , as it

should be.
Let us conclude by summarizing and commenting our re-

sults. We present a covariant(and, hence, very natural)
scheme for transmitting continuous information efficiently
through a quantum channel. It requires Alice and Bob to
share an entangled state of the form(1). This state can be
prepared with, e.g., a number of spins or two hydrogen at-
oms. We determine the coefficients —given in Eq.(19)—
which enable Alice to communicate with the smallest error.
The procedure is as simple as Alice locking her part of the
system to her frame and sending it to Bob who performs a
generalized covariant measurement on the whole Hilbert
space. The error, defined in Eq.(3), is given by

khlmin = 4S1 − cos
2p

N + 3
D , s23d

which follows from the relationkhl=6−2kx1l. The corre-
sponding asymptotic behavior iskhlmin=8p2/N2. This is a
striking improvement over any other previously known
scheme. We also prove that the optimal measurements are
covariant POVMs, which one can choose to be either con-
tinuous, Eq.s21d, or to have a finite number of outcomes.
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Our work bears a strong connection with Ref.[14], where
the estimation of a unitary transformation on qubits is stud-
ied. This problem and that of aligning reference frames are
formally the same. To be more concrete, let us assume Alice
is given a black box that performs an unknown unitary op-
eration on qubits(they do not need to be spins in this case)
and she is asked to identify it. If she is allowed to apply the
unknown operationN times, the best she can do is the fol-
lowing [14]: (a) prepare the 2N-qubit state(1), (b) apply
usgdP1/2 over N qubits, which results in the state(2), and
(c) perform the POVM whose elements are given in Eq.(21).
Note that now all the states are referred to a unique reference
frame, that of Alice(Bob does not play any role in this case).
We must stress that this task cannot be performed unless both
uFl and the POVM elements can be referred to the same
reference frame, which requires that the person who per-
forms the measurement, if not Alice herself, must share a
reference frame with her.

Another (minor) difference with respect to the alignment
of frames concerns the figure of merit used in Ref.[14],
which is the fidelity F= utrfusgdu†sgrdgu2/4=x1/2

2 sggr
−1d /4.

Our results can be straightforwardly applied in this context
because of the simple relationx1/2

2 sgd=1+x1sgd. Hence, for

instance, Eq.(18) implies that the optimal mean fidelity is

F̄ = kFl =
1

2
S1 + cos

2p

N + 3
D , s24d

whereas for largeN one hasF̄=1−p2/N2+¯. This extends
the results of Ref.f14g to arbitraryN.

Finally, we would like to point out that our approach re-
sembles the so-called continuous dense coding introduced in
Ref. [19], where the communication of a single phase—Us1d
group—was discussed. They found that dense coding can
improve the channel capacity, but not always. This is an
indication that the absolute optimal scheme for a phase[10]
does not require bipartite entanglement, contrasting with our
approach for SUs2d, which always improves the efficiency of
the communication.
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