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Entanglement-assisted alignment of reference frames using a dense covariant coding

E. Bagan, M. Baig, and R. Mufioz-Tapia
Grup de Fisica Teorica & IFAE, Facultat de Ciéncies, Edifici Cn, Universitat Autonoma de Barcelona,
08193 Bellaterra (Barcelona), Spain
(Received 18 December 2003; published 14 May 2004

We present a procedure inspired by dense coding, which enables a highly efficient transmission of informa-
tion of a continuous nature. The procedure requires the sender and the recipient to share a maximally entangled
state. We deal with the concrete problem of aligning reference frames or trihedra by means of a quantum
system. We find the optimal covariant measurement and compute the corresponding average error, which has
a remarkably simple close form. The connection of this procedure with that of estimating unitary transforma-
tions on qubits is briefly discussed.
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Entanglement has long been recognized as a powerful rend Bob and, in some situatiofi3-7,10-12, such informa-
source in quantum communication. Teleportatidj and tion cannot be codified by a series of bits. Indeed, a digital
dense coding2], for instance, would not be possible without representation of an orientation has no meaning unless it is
entanglement. Even when entanglement is not strictly neceseferred to a common reference frame. No such frame will be
sary, one frequently runs across situations for which the usassumed to be known to both Alice and Bob unless otherwise
of entangled states, instead of plain product states, providesstated, though we will use Bob’s to simplify the mathemat-
significant improvement. Examples of this can be easilyics. Hence, the messenger will have to be a quantum system
found in the literature. This Rapid Communication provideswith intrinsic orientation. More specifically, in this Rapid
yet another interesting instance, which one could refer to aSommunication we will consider a system of spigSee
dense covariant coding. Ref.[13] for another protocol of sending information without

Two interesting problems in quantum communication ina shared reference framélhe subject of this Rapid Com-
which entanglement plays a fundamental role are those ahunication is also related to the important issue of estimat-
sending the information that specifigsa direction in space, ing a unitary operation on qubif&4]. We will come back to
i.e., a unit vectom,, or (ii) three orthogonal one@ trihe-  this point in the conclusions.
dron) n={n;,n,,ns}. Whereas(i) has been extensively dis-  Suppose both Alice and Bob have a systenNafins; let
cussed in the literaturi8—5], only recently significant atten- us call’H, andHg their respective Hilbert spacétrough-
tion [6—8] has been paid tgii). It has been shown that out this Rapid Communication subscripdssand B will al-
guantum states can indeed be used to establish a commarays refer to Alice and Bob Before they start their interga-
reference frame between two partigdice and Bob. Thus, lactic journeys, they prepare a state of the form
for instance, atoms or a number of spifieroughout this J_

Rapid Communication we use the word spin as synonym of . a; ] .

spin-1/2 particlg can encode the relative orientation of two D)= 2 gy dh) = 2 _HL 2 [im)alim)e, (1)
trihedra. The fidelityor alternatively, the mean-square error ! b=

per axig of the optimal covariant communication protocol wherej runs from zero t\/2 for N even(from 1/2 toN/2
[where covariance refers to the set of signal states being thg N odg), d,=2j+1 is the dimension of the representatjon
orbit of a group; SW2) for the problem at haidis now  4f 5y2), ‘and 3, a’=1. Also before departure, they lock
known for both finite and asymptotically large numi¢of  he orientation of their systems of spins to that of their

copies of the messenger state. _ . respective spacecrafts. When they are far apart, they need
In this Rapid Communication we show that the intensive;, get aligned. Unfortunately, their classical computers

use of entanglement yields a remarkable improvement oveli5sh and they cannot retrieve the information about the
the approaches for aligning spatial frames discussed abovgpange of their relative orientation. At this point in time,
More specifically, suppose Alice and Bob share a maximallyhe state of Alice’s and Bob’s spins is still given by Eq.
entangled state. Then, we will show that using a covarian{l) but |jm), and |jm)g are now referred to Alice’s and
protocol it is possible to establish a common reference framg s reference frames, respectivein this presentation
with a mean-square error per axis given[ly-cos 2r/(N he words spacecraft and reference frame are synonyms
+3)]/3, which behaves as#/(3N%). This protocol bears a Relative to Bob's reference frame this state can be written
great similarity to dense coding as far as it uses entanglemegk

in the same manner and provides a remarkable improvement

in the transmission of informatiof9]. Dense coding has |D(g)) = Ua(g) ® 1g|D), (2
mainly been discussed for discrete signals. However, the in-

formation we are attempting to transmit has an intrinsicallywhereU,(g) belongs to the direct sum of irreducible repre-
continuous nature: it refers to the relative orientation of Alicesentations of S(2) andg stands for the three Euler angles
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of the spacial rotation that takes Bob’s reference frame _ 1 DN
into Alice’s. With no other resource available, Alice sends Q) = — > D limiadaim; g (7)
her N spins to Bob, with the hope that he will retrieve VAN me—j a=1

glcljor?/végetrg ﬂ;?f(;?rfr? rmearlltlec:r;\litzheedy cr;ﬁz?:ﬁvTeo rr?ecz)assgr,e&eerﬁémtead of Eq(1). Herea labels the differenty occurrences
P 8 ge . of j in the Clebsch-Gordan decomposition (@f 2)®N. We
on both Alice’s and his own spins, namely, on the state

(2). Note that|®) and |®(g)) are maximally entangled in next_show that,_as far as the evaluation of the ”f'aX'W??'
eachj. Note also that in Eq(1) all of these representa- (minimal errop is concerned, we need to consider egch

I C _
tions appear only once, despite the fact that in the®nly once. Let us define’,s=1,... nj-1, as the set of
Clebsch-Gordan decomposition @/2)®N they may show Ni(Nj—1) complex numbergwhich we may regard as the
up several times. We will show th&b) is optimal for the ~components ofn;—1 orthogonal unit vectojssuch that

. . . . (r* (s) — (s)— ;
problem at hand, provided a suitable choiceapf-0 is  >a v, Uy =6s and 3,v. =0 [ie., orthogonal to the

made[see Eq.(19) below]. n;-dimensional vectof1,1,...,3]. We note that the states
The quality of the communication strategy can be quanti{Qsm ==, v'%|im; a)|jm; @) satisfy (Q|Ux(g) ® Ig/Qqm
fied by the averaged Holevo'’s errfi5] =3, vff)@g)m(g)/\f'ﬁ=0 for all g, s, and m, where we
have used thang(g):<jm;a|U(g)|jm’;a). Hence, |Q))
(hy=>, fdg hg,0,)p(r|g), (3) effectively lives in only one of the irreducible representa-
r

tionsj and it can be chosen as in Eq) without any loss
N3 (= s 2 R . of generality.
Where h(gvg ):E =1 |na(g)_na(g )| ; n(g):{nl(g)an(g)a To prove C|a|m(b) we rewrite Eq(4) as
Ns(g)} defines the frame Alice is transmitting to Boh(g,)
={n;(g,),",(g,),N5(g,)} defines the frame Bob guesses from B i~ i~
the outcomer of his measurement; andg is the invariant <X1>—§r: El ag | dg xi (gD ¥rWy),  (8)
Haar measure of S@). Each one of these trihedra is la- )
beleq \ivith _the parameterg of_the rptation v_vhich bring Where|®j&)l>:|®j>®|&)l>, the state|&)') is obtained by ap-
no={X,y,Z into the desired orientatiomp(r|g) is the con- ) ing 1o |®'y time reversal only i, (analogous defini-

ditional probability of Bob obtaining the outconraf Al- . X _ ,
ice sendsi(g). Note thath(g,g’) is related to the character It:eor‘lr:;golg;(zgqifé\lﬁ)), andi/=U,@U,@lg®ls. By Schur's

x1 Of the representatiol of SU(2) through h(g,g’)=6
-2x1(gg’ ™). Hence, we just need to computg,). From 1 .
this, the square error per axis, to which we referred above, o = 52 E aa tri(pp @ py), 9
is (3=(x1))/6. Quantum mechanics tells us that the condi- ro

tional probability isp(r|g) =(®(g)|O,|®(g)), where{O,} is L Wi o~ ~

a com%lete setyof %(ogzivé c()%)iraior(g)luch tﬁé{tor?;]l where we have defineg =tr B(N.fo@')’ plf_tr B(|\P|f><q)l|)’
namely, the elements of a positive operator valured ’mea"imd t(try) s_tands fo_r the_partlal trace ovetg _(over the
surement(POVM) in the whole subspace oH,® Hg r_ezplrese<nltrz;1]|tg)|r1m%) dg;/narl?hné Scshtw;pzaﬁ]eé ua:iiet.,wé@ob-
where the signal states belong. Recalling the invariance of m:# bound ' 9 a y

the Haar measurelg=d(gg’), we can write tain the boun

, tri(pl @ B) < \tr(plpl @ It @ B, (10)
=3 [doxoleevr, @ o .
r wherel; (1)) is the identity restricted to the representatjon
(I) subspace. The equality holds [i¥'})=c;|®!) since this
choice implies p!=c;tr g(|®')(P)=c;l;/d;. To obtain
_ut S, ¢2=d? one just has to trace E¢5) on each irreducible
W] = Up@r) @ 160 UaG) @ Ta. ® reprjesejntation subspace.
This definition implicitly assumes that optimal POVM's can  With this information we can go back to E@}) and cast
always be chosen to have rank 1 elemdi$]. We claim 't as
that (a) the states of the fornil) are optimal if the positive
coefficientsa; are properly chosen arih) and for the opti- (x) < > f dg x1(9)
mal POVM one has r

where

A 2
250%%(9)‘ SNGEY
J ]

W= [wh=S ¢ o)) D 2 =d2. (6)  Where we have used théd!|U} ® Ig|®/)=x;(g)/d;. To get
i i ; rid of the coefficientsc;,, note that

To prove claim(a) we borrow from Ref[14] some results _ 2 2_ 4
concerning the estimation of an 82 transformation, in Er:CJrC" = zr: Cir Er:c'f =did. (12

particular, that the optimal state can be chosen tddbe
=3 a|V), with The equality holds iff
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o =dyc;, (13) Or=C Ung) ® g [WXW|UNG) ® s, (20)
whereZ,c,=1. Hence where|¥)=3; , \*‘EH ,m),|j, M. But for a rescaling factor

c,, we see that the positive operat@sare all obtained by
2 rotating a fix reference stat@l). This exhibits the cova-
E anj(g)’ : (14) riance of the scheme. An immediate choice that saturates
: the bound(18) is provided by the continuous POVM,

The group integral can be easily performed by recalling the _ t
Clebsch-Gordan serie)s](g)x,(g)zﬁ{:;'“_” x«(9) and the or- O(9) =Ua@) ® Ig [WX¥|UAQ) ® Te. 2D
thogonality of the charactergl7], namely, fdgx;(@x(9)  Using Schur's lemma, we geldg O(g)=%; T4Is, wherel),

= ;. The result can be conveniently written as (IL) is the identity in Alice’s(Bob’s) representation sub-
space. This is the identity in the Hilbert subspace to which
all signal state$d(g)) belong. Hence, the infinite s¢O(g)}

is a POVM for these signal states.

A continuous POVM, such as E@21), with infinitely
many outcomes is not physically realizable. Hence, it is im-
0 1 0 portant to show that optimal POVMs with a finite number of

outcomes do exist. The most straightforward way of obtain-

= [ do e

(xy) < 1+a'™Ma. (15)

Herea'=(ay/p, anjo-1,anj2-2, - -.) IS the transpose af andM
is the tridiagonal matrix

1 ing a finite (though not necessarily minimaPOVM is by
M= -0 1 , (16) finding a finite sef{g,},r=1,---,n(J), of elements of S(2)
1 0 1 and positive weightgc,} such that the orthogonality relation
0 1¢ nJ) 8 SnOr ey
o D (8D () =Cr—r (22
where¢=-1(£=0) for N even(odd). One could also obtain ,% Dy (8D (9 = €5 2j+1 (22

Eq. (15 directly from Eq.(9) by simply noticing that (I . 0 o
®1)=3 if j+I=1=|j-1| and it vanishes otherwise. The holds for allj,1<J=N/2+1, where C,=X 2 ¢/. This dis-
maximal value of the quadratic form in E¢L5) is given  crete version of the standard orthogonality relations of3U

by the largest eigenvalue &f. Its characteristic polyno- is only valid up to a maximal valué. The larger thel is,

mial is P,(\)=de{M+2\]), wheren is the dimension of the larger then(J) that must be chosen. There are many
M, namely, n=N/2+1(n=N/2+1/2) for N even (odd). solutions to these equations and we refer the reader to Ref.
Note that we have defined the eigenvaluesvbfis -2,  [7] for details. Oncdg,} and{c/} have been computed, we
where\g, s=1,2... n, are the zeroes dP,(\). The char- simply define ¢,;=c//C; and obtain the desired finite

acteristic polynomials obey the simple recurrence relatioOVM elements by substituting these values in Ef).
Equation(22) ensures that Schur’'s lemma will work for

P,(A) = 2\Pr_1(\) = Prs(M), (17)  the finite set{g,,c,}, thus obtainingZ, O,==; II}, as it
should be.
which is that of the Tchebychev polynomidlsg], and the Let us conclude by summarizing and commenting our re-

initial conditions arePg(\)=1 andPy(\)=2\+{. Hence, the  sults. We present a covariaiiand, hence, very natupal
solution is Pp(\)=Uy(N)+{Un4(\), where Uy(cos#)  scheme for transmitting continuous information efficiently
=sin (n+1)6]/sin 6 are the Tchebychev polynomials of the through a quantum channel. It requires Alice and Bob to
second kind. It is now straightforward to compute theshare an entangled state of the fo(i). This state can be
largest eigenvalue ofM. It can be written as prepared with, e.g., a number of spins or two hydrogen at-
2 co$2=7/(N+3)] and, hence, oms. We determine the coefficients —given in Efj9)—
which enable Alice to communicate with the smallest error.
The procedure is as simple as Alice locking her part of the
system to her frame and sending it to Bob who performs a
generalized covariant measurement on the whole Hilbert
One can also verify that the corresponding eigenvector is space. The error, defined in E@), is given by

21
XDmax=1+2 COSNT3. (18)

2 (2j+Dw
Q= sin .
VN+3 N+3

2T

(19) (Mmin= 4<1 - com) : (23

Equation(18) gives an upper bound of the actdgh)max ~ Which follows from the relatiorKh)=6-2x;). The corre-
We need to show that this bound is indeed saturated by sponding asymptotic behavior {§),i,=87/N2. This is a
covariant measurement. To do this, we just trace the condstriking improvement over any other previously known
tions under which all th¢Schwarz inequalities used in the scheme. We also prove that the optimal measurements are
proof are saturated. Substituting in E§) the relation|¥,) covariant POVMs, which one can choose to be either con-
=\c, dj|<I>j>, which follows from Egs(6) and(13), we get tinuous, Eq.(21), or to have a finite number of outcomes.
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Our work bears a strong connection with Rgf4], where  instance, Eq(18) implies that the optimal mean fidelity is
the estimation of a unitary transformation on qubits is stud-

ied. This problem and that of aligning reference frames are — 1 20
formally the same. To be more concrete, let us assume Alice F=(F)= > 1+ cog 3/ (24)

is given a black box that performs an unknown unitary op-
eration on qubitgthey do not need to be spins in this case _

and she is asked to identify it. If she is allowed to apply thewhereas for larg& one hasF=1-7?/N?+---. This extends
unknown operatiorN times, the best she can do is the fol- the results of Ref{14] to arbitraryN.

lowing [14]: (a) prepare the R-qubit state(1), (b) apply Finally, we would like to point out that our approach re-
u(g) e 1/2 over N qubits, which results in the stafg), and  sembles the so-called continuous dense coding introduced in
(c) perform the POVM whose elements are given in &1). Ref.[19], where the communication of a single phadg)

Note that now all the states are referred to a unique referenggoup—was discussed. They found that dense coding can
frame, that of Alice(Bob does not play any role in this case improve the channel capacity, but not always. This is an
We must stress that this task cannot be performed unless bojilication that the absolute optimal scheme for a pljase

|®) and the POVM elements can be referred to the samgges not require bipartite entanglement, contrasting with our

reference frame, which re;quires 'Fhat the person who Perapproach for S(R), which always improves the efficiency of
forms the measurement, if not Alice herself, must share @he communication.

reference frame with her.

Another (minor) difference with respect to the alignment  We are grateful to A. Acin and E. Jané for helpful conver-
of frames concerns the figure of merit used in R@], sations. We acknowledge financial support from Spanish
which is the fidelity F=|tr[u(g)u’(g,)]|%/4=x2(gg;)/4.  Ministry of Science and Technology under Project No.
Our results can be straightforwardly applied in this contextBFM2002-02588, CIRIT Project No. SGR-00185, and QU-
because of the simple relatioff,,(g)=1+x.(g). Hence, for PRODIS working group EEC Contract No. IST-2001-38877.
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