7,726 research outputs found

    Neutron matter under strong magnetic fields: a comparison of models

    Get PDF
    The equation of state of neutron matter is affected by the presence of a magnetic field due to the intrinsic magnetic moment of the neutron. Here we study the equilibrium configuration of this system for a wide range of densities, temperatures and magnetic fields. Special attention is paid to the behavior of the isothermal compressibility and the magnetic susceptibility. Our calculation is performed using both microscopic and phenomenological approaches of the neutron matter equation of state, namely the Brueckner--Hartree--Fock (BHF) approach using the Argonne V18 nucleon-nucleon potential supplemented with the Urbana IX three-nucleon force, the effective Skyrme model in a Hartree--Fock description, and the Quantum Hadrodynamic formulation with a mean field approximation. All these approaches predict a change from completely spin polarized to partially polarized matter that leads to a continuous equation of state. The compressibility and the magnetic susceptibility show characteristic behaviors, which reflect that fact. Thermal effects tend to smear out the sharpness found for these quantities at T=0. In most cases a thermal increase of 10 MeV is enough to hide the signals of the change of polarization. The set of densities and magnetic field intensities for which the system changes it spin polarization is different for each model. However, there is an overall agreement between the three theoretical descriptions.Comment: updated to correspond with the published versio

    On the Conformal Geometry of Transverse Riemann-Lorentz Manifolds

    Get PDF
    Physical reasons suggested in \cite{Ha-Ha} for the \emph{Quantum Gravity Problem} lead us to study \emph{type-changing metrics} on a manifold. The most interesting cases are \emph{Transverse Riemann-Lorentz Manifolds}. Here we study the conformal geometry of such manifolds

    An 80 pc Long Massive Molecular Filament in the Galactic Mid-Plane

    Full text link
    The ubiquity of filaments in star forming regions on a range of scales is clear, yet their role in the star formation process remains in question. We suggest that there are distinct classes of filaments which are responsible for their observed diversity in star-forming regions. An example of a massive molecular filament in the Galactic mid-plane formed at the intersection of UV-driven bubbles which displays a coherent velocity structure (< 4 km/s) over 80 pc is presented. We classify such sources as Massive Molecular Filaments (MMFs; M > 10^4 Msun, length > 10 pc, velocity gradient < 5 km/s) and suggest that MMFs are just one of the many different classes of filaments discussed in the literature today. Many MMFs are aligned with the Galactic Plane and may be akin to the dark dust lanes seen in Grand Design Spirals.Comment: To appear in proceedings of the 'Labyrinth of Star Formation' meeting (18-22 June 2012, Chania, Greece), published by Springe

    Ion Beams in Multi-Species Plasma

    Full text link
    Argon and xenon ion velocity distribution functions are measured in Ar-He, Ar-Xe, and Xe-He expanding helicon plasmas to determine if ion beam velocity is enhanced by the presence of lighter ions. Contrary to observations in mixed gas sheath experiments, we find that adding a lighter ion does not increase the ion beam speed. The predominant effect is a reduction of ion beam velocity consistent with increased drag arising from increased gas pressure under all conditions: constant total gas pressure, equal plasma densities of different ions, and very different plasma densities of different ions. These results suggest that the physics responsible for the acceleration of multiple ion species in simple sheaths is not responsible for the ion acceleration observed in expanding helicon plasmas

    Measuring the properties of extragalactic dust and implications for the Hubble diagram

    Get PDF
    Scattering and absorption of light by a homogeneous distribution of intergalactic large dust grains has been proposed as an alternative, non-cosmological explanation for the faintness of Type Ia supernovae at z\s im 0.5. We investigate the differential extinction for high-redshift sources caused by extragalactic dust along the line of sight. Future observations of Type Ia supernovae up to z∼2z\sim 2, e.g. by the proposed SNAP satellite, will allow the measurement of the properties of dust over cosmological distances. We show that 1% {\em relative} spectrophotometric accuracy (or broadband photometry) in the wavelength interval 0.7--1.5 μ\mum is required to measure the extinction caused by ``grey'' dust down to δm=0.02\delta m=0.02 magnitudes. We also argue that the presence of grey dust is not necessarily inconsistent with the recent measurement of the brightness of a supernova at z=1.7z=1.7 (SN 1997ff), in the absence of accurate spectrophotometric information of the supernova.Comment: Accepted by A&
    • …
    corecore