91 research outputs found

    Motion of vortices in type II superconductors

    Get PDF
    The methods of formal asymptotics are used to examine the behaviour of a system of curvilinear vortices in a type II superconductor as the thickness of the vortex cores tends to zero. The vortices then appear as singularities in the field equation and are analagous to line vortices in inviscid hydrodynamics. A local analysis near each vortex core gives an equation of motion governing the evolution of these singularities

    Effect of Primidone on Dentate Nucleus γ-Aminobutyric Acid Concentration in Patients With Essential Tremor

    Get PDF
    OBJECTIVES: It is not known whether current use of the medication primidone affects brain γ-aminobutyric acid (GABA) concentrations. This is an important potential confound in studies of the pathophysiology of essential tremor (ET), one of the most common neurological diseases. We compared GABA concentrations in the dentate nucleus in 6 ET patients taking primidone versus 26 ET patients not taking primidone. METHODS: (1)H magnetic resonance spectroscopy was performed using a 3.0-T Siemens Tim Trio scanner. The MEGA-PRESS J-editing sequence was used for GABA detection in 2 cerebellar volumes of interest (left and right) that included the dentate nucleus. RESULTS: The right dentate GABA concentration was similar in the 2 groups (2.21 ± 0.46 [on primidone] vs 1.93 ± 0.39 [not on primidone], P = 0.15), as was the left dentate GABA concentration (1.61 ± 0.35 [on primidone] vs 1.67 ± 0.34 [not on primidone], P = 0.72). The daily primidone dose was not associated with either right or left dentate GABA concentrations (P = 0.89 and 0.76, respectively). CONCLUSIONS: We did not find a difference in dentate GABA concentrations between 6 ET patients taking daily primidone and 26 ET patients not taking primidone. Furthermore, there was no association between daily primidone dose and dentate GABA concentration. These data suggest that it is not necessary to exclude ET patients on primidone from magnetic resonance spectroscopy studies of dentate GABA concentration, and if assessment of these concentrations was to be developed as a biomarker for ET, primidone usage would not confound interpretation of the results

    Cerebral Gray Matter Volume Losses in Essential Tremor: A Case-Control Study Using High Resolution Tissue Probability Maps

    Get PDF
    Introduction Essential tremor (ET) is increasingly recognized as a multi-dimensional disorder with both motor and non-motor features. For this reason, imaging studies are more broadly examining regions outside the cerebellar motor loop. Reliable detection of cerebral gray matter (GM) atrophy requires optimized processing, adapted to high-resolution magnetic resonance imaging (MRI). We investigated cerebral GM volume loss in ET cases using automated segmentation of MRI T1-weighted images. Methods MRI was acquired on 47 ET cases and 36 controls. Automated segmentation and voxel-wise comparisons of volume were performed using Statistical Parametric Mapping (SPM) software. To improve upon standard protocols, the high-resolution International Consortium for Brain Mapping (ICBM) 2009a atlas and tissue probability maps were used to process each subject image. Group comparisons were performed: all ET vs. Controls, ET with head tremor (ETH) vs. Controls, and severe ET vs. Controls. An analysis of variance (ANOVA) was performed between ET with and without head tremor and controls. Age, sex, and Montreal Cognitive Assessment (MoCA) score were regressed out from each comparison. Results We were able to consistently identify regions of cerebral GM volume loss in ET and in ET subgroups in the posterior insula, superior temporal gyri, cingulate cortex, inferior frontal gyri and other occipital and parietal regions. There were no significant increases in GM volume in ET in any comparisons with controls. Conclusion This study, which uses improved methodologies, provides evidence that GM volume loss in ET is present beyond the cerebellum, and in fact, is widespread throughout the cerebrum as well

    Gray matter density loss in essential tremor: a lobule by lobule analysis of the cerebellum

    Get PDF
    BACKGROUND: The pathophysiological basis for essential tremor (ET) remains unclear, although evidence increasingly links it to a disordered and perhaps degenerative cerebellum. Prior imaging studies have treated the cerebellum en bloc. Our hypothesis was that regional differences in cerebellar gray matter (GM) density may better distinguish ET cases from controls. Forty-seven ET cases and 36 control subjects were imaged using magnetic resonance imaging (MRI). The cerebellum was segmented into 34 lobes using a Spatially Unbiased Infra-Tentorial Template (SUIT) atlas within the Statistical Parametric Mapping (SPM) analysis package. Age, gender and Montreal Cognitive Assessment (MoCA) scores were regressed out from the statistical models to isolate group effects. ET cases were further stratified into phenotypically-defined subgroups. The Benjamini-Hochberg False Discovery Rate procedure (BH FDR) (α = 0.1) was used to correct for multiple comparisons. RESULTS: When all ET cases and controls were compared, none of the regions met the BH FDR criteria for significance. When compared with controls, ET cases with head or jaw tremor (n = 27) had significant changes in GM density in nine cerebellar lobules, with a majority in the left cerebellar region, and each meeting the BH FDR criteria. Likewise, ET cases with voice tremor (n = 22) exhibited significant changes in 11 lobules in both left and right regions and the vermis. These analyses, in sum, indicated decreases in GM density in lobules I-IV, V, VI, VII and VIII as well as the vermis. ET cases with severe tremor (n = 20) did not show regions of change that survived the BH FDR procedure when compared to controls. CONCLUSIONS: We showed that ET cases with various forms of cranial tremor differed from controls with respect to cerebellar GM density, with evidence of GM reduction across multiple cerebellar regions. Additional work, using a lobule-by-lobule approach, is needed to confirm these results and precisely map the regional differences in ET cases, subgroups of ET cases, and controls

    In Vivo Dentate Nucleus Gamma-aminobutyric Acid Concentration in Essential Tremor vs. Controls

    Get PDF
    Despite its high prevalence, essential tremor (ET) is among the most poorly understood neurological diseases. The presence and extent of Purkinje cell (PC) loss in ET is the subject of controversy. PCs are a major storehouse of central nervous system gamma-aminobutyric acid (GABA), releasing GABA at the level of the dentate nucleus. It is therefore conceivable that cerebellar dentate nucleus GABA concentration could be an in vivo marker of PC number. We used in vivo 1H magnetic resonance spectroscopy (MRS) to quantify GABA concentrations in two cerebellar volumes of interest, left and right, which included the dentate nucleus, comparing 45 ET cases to 35 age-matched controls. 1H MRS was performed using a 3.0-T Siemens Tim Trio scanner. The MEGA-PRESS J-editing sequence was used for GABA detection in two cerebellar volumes of interest (left and right) that included the dentate nucleus. The two groups did not differ with respect to our primary outcome of GABA concentration (given in institutional units). For the right dentate nucleus, [GABA] in ET cases = 2.01 ± 0.45 and [GABA] in controls = 1.86 ± 0.53, p = 0.17. For the left dentate nucleus, [GABA] in ET cases = 1.68 ± 0.49 and [GABA] controls = 1.80 ± 0.53, p = 0.33. The controls had similar dentate nucleus [GABA] in the right vs. left dentate nucleus (p = 0.52); however, in ET cases, the value on the right was considerably higher than that on the left (p = 0.001). We did not detect a reduction in dentate nucleus GABA concentration in ET cases vs. CONTROLS: One interpretation of the finding is that it does not support the existence of PC loss in ET; however, an alternative interpretation is the observed pattern could be due to the effects of terminal sprouting in ET (i.e., collateral sprouting from surviving PCs making up for the loss of GABA-ergic terminals from PC degeneration). Further research is needed

    Reproducibility and effect of tissue composition on cerebellar GABA MRS in an elderly population.

    Get PDF
    Magnetic resonance spectroscopy (MRS) provides a valuable tool to non-invasively detect brain gamma-amino butyric acid (GABA) in vivo. GABAergic dysfunction has been observed in the aging cerebellum. Studying cerebellar GABA changes is of considerable interest in understanding certain age-related motor disorders. However, little is known about the reproducibility of GABA MRS in an aged population. Therefore, this study aimed to explore the feasibility and reproducibility of GABA MRS in the aged cerebellum at 3.0 Tesla and to examine the effect of differing tissue composition on GABA measurements. MRI and 1H MRS exams were performed on 10 healthy elderly volunteers (mean age 75.2 years ± 6.5 years) using a 3.0 Tesla Siemens Tim Trio scanner. Among them, 5 subjects were scanned twice to assess short-term reproducibility. The MEGA-PRESS J-editing sequence was used for GABA detection in two volumes of interest (VOIs) in left and right cerebellar dentate. MRS data processing and quantification were performed with LCModel 6.3-0L using two separate basis sets, generated from density matrix simulations using published values for chemical shifts an

    On the boundary layer structure near a highly permeable porous interface

    Get PDF
    The method of matched asymptotic expansions is used to study the canonical problem of steady laminar flow through a narrow two-dimensional channel blocked by a tight-fitting finite-length highly permeable porous obstacle. We investigate the behaviour of the local flow close to the interface between the single-phase and porous regions (governed by the incompressible Navier--Stokes and Darcy flow equations, respectively). We solve for the flow in these inner regions in the limits of low and high Reynolds number, facilitating an understanding of the nature of the transition from Poiseuille to plug to Poiseuille flow in each of these limits. Significant analytical progress is made in the high-Reynolds-number limit, and we explore in detail the rich boundary layer structure that occurs. We derive general results for the interfacial stress and for the conditions that couple the flow in the outer regions away from the interface. We consider the three-dimensional generalization to unsteady laminar flow through and around a tight-fitting highly permeable cylindrical porous obstacle within a Hele-Shaw cell. For the high-Reynolds-number limit, we give the coupling conditions and interfacial stress in terms of the outer flow variables, allowing information from a nonlinear three-dimensional problem to be obtained by solving a linear two-dimensional problem. Finally, we illustrate the utility of our analysis by considering the specific example of time-dependent forced far-field flow in a Hele-Shaw cell containing a porous cylinder with a circular cross-section. We determine the internal stress within the porous obstacle, which is key for tissue engineering applications, and the interfacial stress on the boundary of the porous obstacle, which has applications to biofilm erosion. In the high-Reynolds-number limit, we demonstrate that the fluid inertia can result in the cylinder experiencing a time-independent net force, even when the far-field forcing is periodic with zero mean

    Accurate localization of brain activity in presurgical fMRI by structure adaptive smoothing

    Get PDF
    An important problem of the analysis of fMRI experiments is to achieve some noise reduction of the data without blurring the shape of the activation areas. As a novel solution to this problem, the Propagation-Separation approach (PS), a structure adaptive smoothing method, has been proposed recently. PS adapts to different shapes of activation areas by generating a spatial structure corresponding to similarities and differences between time series in adjacent locations. In this paper we demonstrate how this method results in more accurate localization of brain activity. First, it is shown in numerical simulations that PS is superior over Gaussian smoothing with respect to the accurate description of the shape of activation clusters and and results in less false detections. Second, in a study of 37 presurgical planning cases we found that PS and Gaussian smoothing often yield different results, and we present examples showing aspects of the superiority of PS as applied to presurgical planning

    Use of small animal PET-CT imaging for in vivo assessment of tendon-to-bone healing: A pilot study.

    Get PDF
    BACKGROUND The availability of non-invasive means to evaluate and monitor tendon-bone healing processes in-vivo is limited. Micro Positron-Emission-Tomography (µPET) using 18F-Fluoride is a minimally invasive imaging modality, with which osteoblast activity and bone turnover can be assessed. The aim of this study was to investigate the use of serial in-vivo µPET/CT scans to evaluate bone turnover along the graft-tunnel interface in a rat ACL (anterior cruciate ligament) reconstruction model. METHODS Unilateral autograft ACL reconstruction was performed in six rats. µPET/CT-scans using 18F-Fluoride were performed 7, 14, 21, and 28 days postoperatively. Standard uptake values (SUV) were calculated for three tunnel regions (intraarticular aperture (IAA), mid-tunnel, and extraarticular aperture (EAA)) of the proximal tibia. Animals were sacrificed at 28 days and evaluated with µCT and histological analysis. RESULTS SUVs in both bone tunnels showed an increased 18F-Fluoride uptake at 7 days when compared to 14, 21, and 28 days. SUVs showed a gradient on the tibial side, with most bone turnover in the IAA and least in the EAA. At 7, 14, 21, and 28 days, there were significantly higher SUV values in the IAA compared to the EAA (p = .01, < .01, < .01, < .01). SUVs positively correlated with new bone volumetric density obtained with μCT (r = 0.449, p = .013). Volumetric density of newly formed bone detected on μCT correlated with osteoblast numbers observed along the tunnels in histological sections (r = 0.452, p < .016). CONCLUSIONS Serial in-vivo µPET/CT-scanning has the potential to provide insight into bone turnover and therefore osteoblastic activity during the healing process. As a result, it allows us to directly measure the effect of interventional strategies in tendon-bone healing
    corecore