68 research outputs found

    Segmentation of the cortical plate in fetal brain MRI with a topological loss

    Full text link
    The fetal cortical plate undergoes drastic morphological changes throughout early in utero development that can be observed using magnetic resonance (MR) imaging. An accurate MR image segmentation, and more importantly a topologically correct delineation of the cortical gray matter, is a key baseline to perform further quantitative analysis of brain development. In this paper, we propose for the first time the integration of a topological constraint, as an additional loss function, to enhance the morphological consistency of a deep learning-based segmentation of the fetal cortical plate. We quantitatively evaluate our method on 18 fetal brain atlases ranging from 21 to 38 weeks of gestation, showing the significant benefits of our method through all gestational ages as compared to a baseline method. Furthermore, qualitative evaluation by three different experts on 130 randomly selected slices from 26 clinical MRIs evidences the out-performance of our method independently of the MR reconstruction quality.Comment: 4 pages, 4 figures. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Cerebral Metabolic Dysfunction at the Acute Phase of Traumatic Brain Injury Correlates with Long-Term Tissue Loss

    Get PDF
    Following traumatic brain injury (TBI), cerebral metabolic dysfunction, characterized by an elevated cerebral microdialysis (CMD) lactate/pyruvate (LP) ratio, is associated with poor outcome. However, the exact pathophysiological mechanisms underlying this association are not entirely established. In this pre-planned analysis of the BIOmarkers of AXonal injury after Traumatic Brain Injury (BIO-AX-TBI) prospective study, we investigated any associations of LP ratio with brain structure volume change rates at 1 year. Fourteen subjects underwent acute-phase (0-96 h post-TBI) CMD monitoring and had longitudinal magnetic resonance imaging (MRI) quantification of brain volume loss between the subacute phase (14 days to 6 weeks) and 1 year after TBI, recalculated as an annual rate. On average, CMD showed an elevated (>25) LP ratio (31 [interquartile range (IQR) 24-34]), indicating acute cerebral metabolic dysfunction. Annualized whole brain and total gray matter (GM) volume change rates were abnormally reduced (-3.2% [-9.3 to -2.2] and -1.9% [-4.4 to 1.7], respectively). Reduced annualized total GM volume correlated significantly with elevated CMD LP ratio (Spearman's ρ = -0.68, p-value = 0.01) and low CMD glucose (ρ = 0.66, p-value = 0.01). After adjusting for age, admission Glasgow Coma Scale (GCS) score and CT Marshall score, CMD LP ratio remained strongly associated with 1-year total GM volume change rate (p < 0.001; multi-variable analysis). No relationship was found between WM volume changes and CMD metabolites. We demonstrate a strong association between acute post-traumatic cerebral metabolic dysfunction and 1-year gray matter atrophy, reinforcing the role of CMD LP ratio as an early biomarker of poor long-term recovery after TBI

    Discussing Challenges in Diagnosis of Tuberculous Meningitis and Neurosarcoidosis.

    Get PDF
    Isolated chronic granulomatous meningitis remains a diagnostic challenge for the physician. Symptoms are often nonspecific and ancillary tests have low-sensitivity rates, which may delay targeted treatment and lead to increased morbidity and mortality. Here, we discuss the challenges in diagnosing and treating patients with chronic meningitis by reporting two cases of previously healthy patients who presented with granulomatous meningitis on brain biopsy

    Alzheimer's disease marker phospho-tau181 is not elevated in the first year after moderate-to-severe TBI

    Get PDF
    BACKGROUND: Traumatic brain injury (TBI) is associated with the tauopathies Alzheimer's disease and chronic traumatic encephalopathy. Advanced immunoassays show significant elevations in plasma total tau (t-tau) early post-TBI, but concentrations subsequently normalise rapidly. Tau phosphorylated at serine-181 (p-tau181) is a well-validated Alzheimer's disease marker that could potentially seed progressive neurodegeneration. We tested whether post-traumatic p-tau181 concentrations are elevated and relate to progressive brain atrophy. METHODS: Plasma p-tau181 and other post-traumatic biomarkers, including total-tau (t-tau), neurofilament light (NfL), ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein (GFAP), were assessed after moderate-to-severe TBI in the BIO-AX-TBI cohort (first sample mean 2.7 days, second sample within 10 days, then 6 weeks, 6 months and 12 months, n=42). Brain atrophy rates were assessed in aligned serial MRI (n=40). Concentrations were compared patients with and without Alzheimer's disease, with healthy controls. RESULTS: Plasma p-tau181 concentrations were significantly raised in patients with Alzheimer's disease but not after TBI, where concentrations were non-elevated, and remained stable over one year. P-tau181 after TBI was not predictive of brain atrophy rates in either grey or white matter. In contrast, substantial trauma-associated elevations in t-tau, NfL, GFAP and UCH-L1 were seen, with concentrations of NfL and t-tau predictive of brain atrophy rates. CONCLUSIONS: Plasma p-tau181 is not significantly elevated during the first year after moderate-to-severe TBI and levels do not relate to neuroimaging measures of neurodegeneration

    A Fetal Brain magnetic resonance Acquisition Numerical phantom (FaBiAN)

    Full text link
    Accurate characterization of in utero human brain maturation is critical as it involves complex and interconnected structural and functional processes that may influence health later in life. Magnetic resonance imaging is a powerful tool to investigate equivocal neurological patterns during fetal development. However, the number of acquisitions of satisfactory quality available in this cohort of sensitive subjects remains scarce, thus hindering the validation of advanced image processing techniques. Numerical phantoms can mitigate these limitations by providing a controlled environment with a known ground truth. In this work, we present FaBiAN, an open-source Fetal Brain magnetic resonance Acquisition Numerical phantom that simulates clinical T2-weighted fast spin echo sequences of the fetal brain. This unique tool is based on a general, flexible and realistic setup that includes stochastic fetal movements, thus providing images of the fetal brain throughout maturation comparable to clinical acquisitions. We demonstrate its value to evaluate the robustness and optimize the accuracy of an algorithm for super-resolution fetal brain magnetic resonance imaging from simulated motion-corrupted 2D low-resolution series compared to a synthetic high-resolution reference volume. We also show that the images generated can complement clinical datasets to support data-intensive deep learning methods for fetal brain tissue segmentation

    MR Volumetry of Lung Nodules: A Pilot Study

    Get PDF
    Introduction: Computed tomography (CT) is currently the reference modality for the detection and follow-up of pulmonary nodules. While 2D measurements are commonly used in clinical practice to assess growth, increasingly 3D volume measurements are being recommended. The goal of this pilot study was to evaluate preliminarily the capabilities of 3D MRI using ultra-short echo time for lung nodule volumetry, as it would provide a radiation-free modality for this task.Material and Methods: Artificial nodules were manufactured out of Agar and measured using an ultra-short echo time MRI sequence. CT data were also acquired as a reference. Image segmentation was carried out using an algorithm based on signal intensity thresholding (SIT). For comparison purposes, we also performed manual slice by slice segmentation. Volumes obtained with MRI and CT were compared. Finally, the volumetry of a lung nodule was evaluated in one human subject in comparison with CT.Results: Using the SIT technique, minimal bias was observed between CT and MRI across the entire range of volumes (2%) with limits of agreement below 14%. Comparison of manually segmented MRI and CT resulted in a larger bias (8%) and wider limits of agreement (−23% to 40%). In vivo, nodule volume differed of &lt;16% between modalities with the SIT technique.Conclusion: This pilot study showed very good concordance between CT and UTE-MRI to quantify lung nodule volumes, in both a phantom and human setting. Our results enhance the potential of MRI to quantify pulmonary nodule volume with similar performance to CT
    corecore