40 research outputs found
Phenotyping of left and right ventricular function in mouse models of compensated hypertrophy and heart failure with cardiac MRI
Background: Left ventricular (LV) and right ventricular (RV) function have an important impact on symptom occurrence, disease progression and exercise tolerance in pressure overload-induced heart failure, but particularly RV functional changes are not well described in the relevant aortic banding mouse model. Therefore, we quantified time-dependent alterations in the ventricular morphology and function in two models of hypertrophy and heart failure and we studied the relationship between RV and LV function during the transition from hypertrophy to heart failure. Methods: MRI was used to quantify RV and LV function and morphology in healthy (n = 4) and sham operated (n = 3) C57BL/6 mice, and animals with a mild (n = 5) and a severe aortic constriction (n = 10). Results: Mice subjected to a mild constriction showed increased LV mass (P,0.01) and depressed LV ejection fraction (EF) (P,0.05) as compared to controls, but had similar RVEF (P.0.05). Animals with a severe constriction progressively developed LV hypertrophy (P,0.001), depressed LVEF (P,0.001), followed by a declining RVEF (P,0.001) and the development of pulmonary remodeling, as compared to controls during a 10-week follow-up. Myocardial strain, as a measure for local cardiac function, decreased in mice with a severe constriction compared to controls (P,0.05). Conclusions: Relevant changes in mouse RV and LV function following an aortic constriction could be quantified using MRI. The well-controlled models described here open opportunities to assess the added value of new MRI techniques for the diagnosis of heart failure and to study the impact of new therapeutic strategies on disease progression and symptom occurrence
Vascular biology in altered gravity conditions
The physical environment of Endothelial Cells profoundly affects their gene expression, structure, function, growth, differentiation and apoptosis. However, the mechanisms by which the genetic and local growth determinants driving morphogenesis are established and maintained remain unknown. Understanding how gravity affects vascular cells will offer new insights for novel therapeutical approaches for cardiovascular disease in general. In terms of tissue engineering and stem-cell therapy, significant future developments will depend on a profound understanding of the cellular and molecular basis of angiogenesis and of the biology of circulating Endothelial Precursor Cells. This MAP project has demonstrated how modelled microgravity influences endothelial proliferation and differentiation with the involvement of anti-angiogenic factors that may be responsible for the non-spontaneous formation of blood vessels. In addition, the team has performed hypergravity/microgravity experiments in order to better understand Endothelial Cells' behaviour under variable gravity conditions. Advantage was taken of modelled microgravity to optimise stromal stem-cell culture conditions for autologous stem-cell therapy. To integrate molecular biology with energy metabolism studies, the team developed a new bioreactor, suitable for Nuclear Magnetic Resonance spectroscopy, in which modelled microgravity conditions can be reached. The advantages of this new prototype can be exploited for industrial applications in metabolite productions significant example is discussed
Cell transplantation for cardiac regeneration: where do we stand?
During the last decade transplantation of cells into the heart has emerged as a novel therapy for the prevention and treatment of heart failure. Although various cell types have been used, most experience has been obtained with the progenitor cells of skeletal muscle, also called myoblasts, and a wide array of bone marrow-derived cell types. The first preclinical studies demonstrated an improvement in global and regional heart function that was attributed mainly to a direct contractile effect of the transplanted cells. Furthermore, it was suggested that multiple cell types are able to form true cardiomyocytes and truly ‘regenerate’ the myocardium. More recent studies have questioned these early findings. Other mechanisms such as paracrine effects on the infarct and remote myocardium, a reduction in adverse remodelling and improvement of mechanical properties of the infarct tissue likely play a more important role. On the basis of encouraging preclinical studies, multiple early-phase clinical trials and several randomised controlled trials have been conducted that have demonstrated the feasibility, safety and potential efficacy of this novel therapy in humans. This review summarises the available evidence on cardiac cell transplantation and provides an outlook on future preclinical and clinical research that has to fill in the remaining gaps. (Neth Heart J 2008;16:88-95.
Postconditioning against ischaemia-reperfusion injury: ready for wide application in patients?
Ischaemic postconditioning (IPOC) is an intervention in which brief, intermittent periods of reocclusion at the onset of reperfusion (i.e. stuttering reperfusion) protect myocardium from lethal reperfusion injury. The mechanism underlying the cardioprotective effects of IPOC is incompletely understood. However, it is perceived that IPOC begins with specific cell-surface receptors responsible for activating a number of signalling pathways, many of which appear to converge at the mitochondrial level. IPOC has been demonstrated both in animal models and in patients with acute myocardial infarction (AMI) in small proof-of-concept trials. This intervention offers the possibility of further limiting infarct size in patients undergoing primary percutaneous coronary intervention (PCI). Here, we provide a brief overview of the concept of IPOC and the mechanisms underlying this phenomenon. (Neth Heart J 2010;18:389–93.
Cardiovascular performance of adult breeding sows fails to obey allometric scaling laws
In view of the remarkable decrease of the relative heart weight (HW) and the relative blood volume in growing pigs, we investigated whether HW, cardiac output (CO), and stroke volume (SV) of modern growing pigs are proportional to BW, as predicted by allometric scaling laws: HW (or CO or SV) = a∙BWb, in which a and b are constants, and constant b is a multiple of 0.25 (quarter-power scaling law). Specifically, we tested the hypothesis that both HW and CO scale with BW to the power of 0.75 (HW or CO = a∙BW0.75) and SV scales with BW to the power of 1.00 (SV = a∙BW1.0). For this purpose, 2 groups of pigs (group 1, consisting of 157 pigs of 50 ± 1 kg; group 2, consisting of 45 pigs of 268 ± 18 kg) were surgically instrumented with a flow probe or a thermodilution dilution catheter, under open-chest anesthetized conditions to measure CO and SV, after which HW was determined. The 95% confidence intervals of power-coefficient b for HW were 0.74 to 0.80, encompassing the predicted value of 0.75, suggesting that HW increased proportionally with BW, as predicted by the allometric scaling laws. In contrast, the 95% confidence intervals of power-coefficient b for CO and SV as measured with flow probes were 0.40 to 0.56 and 0.39 to 0.61, respectively, and values obtained with the thermodilution technique were 0.34 to 0.53 and 0.40 to 0.62, respectively. Thus, the 95% confidence limits failed to encompass the predicted values of b for CO and SV of 0.75 and 1.0, respectively. In conclusion, although adult breeding sows display normal heart growth, cardiac performance appears to be disproportionately low for BW. This raises concern regarding the health status of adult breeding sows
Prostanoids suppress the coronary vasoconstrictor influence of endothelin after myocardial infarction
de Beer VJ, Taverne YJ, Kuster DW, Najafi A, Duncker DJ, Merkus D. Prostanoids suppress the coronary vasoconstrictor influence of endothelin after myocardial infarction. Am J Physiol Heart Circ Physiol 301: H1080-H1089, 2011. First published June 17, 2011; doi:10.1152/ajpheart.01307.2010.-Myocardial infarction (MI) is associated with endothelial dysfunction resulting in an imbalance in endothelium-derived vasodilators and vasoconstrictors. We have previously shown that despite increased endothelin (ET) plasma levels, the coronary vasoconstrictor effect of endogenous ET is abolished after MI. In normal swine, nitric oxide (NO) and prostanoids modulate the vasoconstrictor effect of ET. In light of the interaction among NO, prostanoids, and ET combined with endothelial dysfunction present after MI, we investigated this interaction in control of coronary vasomotor tone in the remote noninfarcted myocardium after MI. Studies were performed in chronically instrumented swine (18 normal swine; 13 swine with MI) at rest and during treadmill exercise. Furthermore, endothelial nitric oxide synthase (eNOS) and cyclooxygenase protein levels were measured in the anterior (noninfarcted) wall of six normal and six swine with MI. eNOS inhibition with N(omega)-nitro-L-arginine (L-NNA) and cyclooxygenase inhibition with indomethacin each resulted in coronary vasoconstriction at rest and during exercise, as evidenced by a decrease in coronary venous oxygen levels. The effect of L-NNA was slightly decreased in swine with MI, although eNOS expression was not altered. Conversely, in accordance with the unaltered expression of cyclooxygenase-1 after MI, the effect of indomethacin was similar in normal and MI swine. L-NNA enhanced the vasodilator effect of the ET(A/B) receptor blocker tezosentan but exclusively during exercise in both normal and MI swine. Interestingly, this effect of L-NNA was blunted in MI compared with normal swine. In contrast, whereas indomethacin increased the vasodilator effect of tezosentan only during exercise in normal swine, indomethacin unmasked a coronary vasodilator effect of tezosentan in MI swine both at rest and during exercise. In conclusion, the present study shows that endothelial control of the coronary vasculature is altered in post-MI remodeled myocardium. Thus the overall vasodilator influences of NO as well as its inhibition of the vasoconstrictor influence of ET on the coronary resistance vessels were reduced after MI. In contrast, while the overall prostanoid vasodilator influence was maintained, its inhibition of ET vasoconstrictor influences was enhanced in post-MI remote myocardium
Does cardiovascular performance of modern fattening pigs obey allometric scaling laws?
In view of the remarkable decrease of the relative heart weight and the relative blood volume in growing pigs, we investigated whether cardiac output (CO) and stroke volume (SV) of modern growing pigs are proportional to body mass (M), as predicted by allometric scaling laws: CO (or SV) = a.Mb, in which b is a multitude of 0.25 (quarter power scaling law). Specifically, we tested the hypothesis that CO scales with M to the power of 0.75 (CO = a.M-0.75) and SV scales with M to the power of 1.00 (SV = a.M-1.0) and investigated whether these relations persisted during increased cardiac stress. For this purpose, 2 groups of pigs (group 1 of 57 +/- 3 kg in Lelystad, and group 2 of 28 +/- 1 kg in Rotterdam) were chronically instrumented with a flow probe to measure CO and SV; instrumented pigs were studied at rest and during strenuous exercise (at similar to 85% of maximum heart rate). Analysis of both groups of pigs (analyzed separately or combined) under resting conditions demonstrated that the 95% confidence intervals of power-coefficient b for CO encompassed 0.75 and for SV encompassed 1.0. During exercise, similar results were obtained, except for SV in group 2, in which the 95% confidence limits remained below 1.0, which may have been due to the relatively small range of BW in group 2. These observations indicate that CO and SV of growing pigs with M less than 75 kg are still proportional to M, even during strenuous exercise, and that CO and SV scale with M according to the quarter power scaling laws. In conclusion, the concerns about disproportional growth and development of modern growing pigs with BW up to 75 kg were not confirmed by the present study
The clinical significance of whole blood viscosity in (cardio)vascular medicine
Whole blood is a non-Newtonian fluid, which means that its viscosity depends on shear rate. At low shear, blood cells aggregate, which induces a sharp increase in viscosity, whereas at higher shear blood cells disaggregate, deform and align in the direction of flow. Other important determinants of blood viscosity are the haematocrit, the presence of macro-molecules in the medium, temperature and, especially at high shear, the deformability of red blood cells. At the sites of severe atherosclerotic obstructions or at vasospastic locations, when change of vessel diameter is limited, blood viscosity contributes to stenotic resistance thereby jeopardising tissue perfusion. However, blood viscosity plays its most important role in the microcirculation where it contributes significantly to peripheral resistance and may cause sludging in the postcapillary venules. Apart from the direct haemodynamic significance, an increase in blood viscosity at low shear by red blood cell aggregation is also associated with increased thrombotic risk, as has been demonstrated in atrial fibrillation. Furthermore, as increased red blood cell aggregation is a reflection of inflammation, hyperviscosity has been shown to be a marker of inflammatory activity. Thus, because of its potential role in haemodynamics, thrombosis and inflammation, determination of whole blood viscosity could provide useful information for diagnostics and therapy of (cardio)vascular disease