147 research outputs found

    Identifying Host Genetic Risk Factors in the Context of Public Health Surveillance for Invasive Pneumococcal Disease

    Get PDF
    Host genetic factors that modify risk of pneumococcal disease may help target future public health interventions to individuals at highest risk of disease. We linked data from population-based surveillance for invasive pneumococcal disease (IPD) with state-based newborn dried bloodspot repositories to identify biological samples from individuals who developed invasive pneumococcal disease. Genomic DNA was extracted from 366 case and 732 anonymous control samples. TagSNPs were selected in 34 candidate genes thought to be associated with host response to invasive pneumococcal disease, and a total of 326 variants were successfully genotyped. Among 543 European Americans (EA) (182 cases and 361 controls), and 166 African Americans (AA) (53 cases and 113 controls), common variants in surfactant protein D (SFTPD) are consistently underrepresented in IPD. SFTPD variants with the strongest association for IPD are intronic rs17886286 (allelic OR 0.45, 95% confidence interval (CI) [0.25, 0.82], with p = 0.007) in EA and 5′ flanking rs12219080 (allelic OR 0.32, 95%CI [0.13, 0.78], with p = 0.009) in AA. Variants in CD46 and IL1R1 are also associated with IPD in both EA and AA, but with effects in different directions; FAS, IL1B, IL4, IL10, IL12B, SFTPA1, SFTPB, and PTAFR variants are associated (p≤0.05) with IPD in EA or AA. We conclude that variants in SFTPD may protect against IPD in EA and AA and genetic variation in other host response pathways may also contribute to risk of IPD. While our associations are not corrected for multiple comparisons and therefore must be replicated in additional cohorts, this pilot study underscores the feasibility of integrating public health surveillance with existing, prospectively collected, newborn dried blood spot repositories to identify host genetic factors associated with infectious diseases

    Telomere length associations with cognition depend on Alzheimer's disease biomarkers

    Get PDF
    Introduction While telomere shortening, a marker of cellular aging, may impact the progression of age‐related neurodegenerative diseases, its association with cognition is unclear, particularly in the context of Alzheimer's disease (AD) pathology. Methods Telomere, cognitive, and CSF data from 482 participants in the AD Neuroimaging Initiative (148 cognitively normal, 283 mild cognitive impairment, 51 AD) was leveraged to assess telomere length associations with cognition (measured by memory and executive function) and interactions with CSF amyloid‐β, tau, and APOE‐ε4. Secondary analyses assessed brain volume and thickness outcomes. Results Longer telomeres at baseline were associated with faster executive function decline. Amyloid‐β and tau interacted with telomere length on cognition, with longer telomeres related to faster decline among biomarker‐positive individuals. Discussion Telomere associations with cognition shift with AD progression, with longer telomeres related to worse outcomes as pathology increases, highlighting the need for further investigation of telomere length along the AD neuropathological cascade

    Biological correlates of elevated soluble TREM2 in cerebrospinal fluid

    Get PDF
    Cerebrospinal fluid (CSF) soluble triggering receptor expressed on myeloid cells-2 (sTREM2) is an emerging biomarker of neuroinflammation in Alzheimer's disease (AD). Yet, sTREM2 expression has not been systematically evaluated in relation to concomitant drivers of neuroinflammation. While associations between sTREM2 and tau in CSF are established, we sought to determine additional biological correlates of CSF sTREM2 during the prodromal stages of AD by evaluating CSF Aβ species (Aβx-40), a fluid biomarker of blood-brain barrier integrity (CSF/plasma albumin ratio), and CSF biomarkers of neurodegeneration measured in 155 participants from the Vanderbilt Memory and Aging Project. A novel association between high CSF levels of both sTREM2 and Aβx-40 was observed and replicated in an independent dataset. Aβx-40 levels, as well as the CSF/plasma albumin ratio, explained additional and unique variance in sTREM2 levels above and beyond that of CSF biomarkers of neurodegeneration. The component of sTREM2 levels correlated with Aβx-40 levels best predicted future cognitive performance. We highlight potential contributions of Aβ homeostasis and blood-brain barrier integrity to elevated CSF sTREM2, underscoring novel biomarker associations relevant to disease progression and clinical outcome measures

    Identifying Mechanisms of Normal Cognitive Aging Using a Novel Mouse Genetic Reference Panel.

    Get PDF
    Developing strategies to maintain cognitive health is critical to quality of life during aging. The basis of healthy cognitive aging is poorly understood; thus, it is difficult to predict who will have normal cognition later in life. Individuals may have higher baseline functioning (cognitive reserve) and others may maintain or even improve with age (cognitive resilience). Understanding the mechanisms underlying cognitive reserve and resilience may hold the key to new therapeutic strategies for maintaining cognitive health. However, reserve and resilience have been inconsistently defined in human studies. Additionally, our understanding of the molecular and cellular bases of these phenomena is poor, compounded by a lack of longitudinal molecular and cognitive data that fully capture the dynamic trajectories of cognitive aging. Here, we used a genetically diverse mouse population (B6-BXDs) to characterize individual differences in cognitive abilities in adulthood and investigate evidence of cognitive reserve and/or resilience in middle-aged mice. We tested cognitive function at two ages (6 months and 14 months) using y-maze and contextual fear conditioning. We observed heritable variation in performance on these traits

    Exploring common genetic contributors to neuroprotection from amyloid pathology

    Get PDF
    Preclinical Alzheimer’s disease describes some individuals who harbor Alzheimer’s pathologies but are asymptomatic. For this study, we hypothesized that genetic variation may help protect some individuals from Alzheimer’s-related neurodegeneration. We therefore conducted a genome-wide association study using 5,891,064 common variants to assess whether genetic variation modifies the association between baseline beta-amyloid, as measured by both cerebrospinal fluid and positron emission tomography, and neurodegeneration defined using MRI measures of hippocampal volume. We combined and jointly analyzed genotype, biomarker, and neuroimaging data from non-Hispanic white individuals who were enrolled in four longitudinal aging studies (n=1065). Using regression models, we examined the interaction between common genetic variants (Minor Allele Frequency > 0.01), including APOE-ε4 and APOE-ε2, and baseline cerebrospinal levels of amyloid (CSF Aβ42) on baseline hippocampal volume and the longitudinal rate of hippocampal atrophy. For targeted replication of top findings, we analyzed an independent dataset (n=808) where amyloid burden was assessed by Pittsburgh Compound B ([{11}^C]-PiB) PET. In this study, we found that APOE-ε4 modified the association between baseline CSF Aβ42 and hippocampal volume such that APOE-ε4 carriers showed more rapid atrophy, particularly in the presence of enhanced amyloidosis. We also identified a novel locus on chromosome 3 that interacted with baseline CSF Aβ42. Minor allele carriers of rs62263260, an expression quantitative trait locus for the SEMA5B gene, (p=1.46x10^{-8}; 3:122675327) had more rapid neurodegeneration when amyloid burden was high and slower neurodegeneration when amyloid was low. The rs62263260 x amyloid interaction on longitudinal change in hippocampal volume was replicated in an independent dataset (p=0.0112) where amyloid burden was assessed by PET. In addition to supporting the established interaction between APOE and amyloid on neurodegeneration, our study identifies a novel locus that modifies the association between beta-amyloid and hippocampal atrophy. Annotation results may implicate SEMA5B, a gene involved in synaptic pruning and axonal guidance, as a high-quality candidate for functional confirmation and future mechanistic analysis

    Whole blood transcript and protein abundance of the vascular endothelial growth factor family relate to cognitive performance

    Get PDF
    The vascular endothelial growth factor (VEGF) family of genes has been implicated in the clinical development of Alzheimer's Disease (AD). A previous study identified associations between gene expression of VEGF family members in the prefrontal cortex and cognitive performance and AD pathology. This study explored if those associations were also observed in the blood. Consistent with previous observations in brain tissue, higher blood gene expression of placental growth factor (PGF) was associated with a faster rate of memory decline (p=0.04). Higher protein abundance of FMS-related receptor tyrosine kinase 4 (FLT4) in blood was associated with biomarker levels indicative of lower amyloid and tau pathology, opposite the direction observed in brain. Also, higher gene expression of VEGFB in blood was associated with better baseline memory (p=0.008). Notably, we observed that higher gene expression of VEGFB in blood was associated with lower expression of VEGFB in the brain (r=-0.19, p=0.02). Together, these results suggest that the VEGFB, FLT4, and PGF alterations in the AD brain may be detectable in the blood compartment

    Alzheimer’s disease genetic risk and cognitive reserve in relationship to long-term cognitive trajectories among cognitively normal individuals

    Get PDF
    Background: Both Alzheimer’s disease (AD) genetic risk factors and indices of cognitive reserve (CR) influence risk of cognitive decline, but it remains unclear whether they interact. This study examined whether a CR index score modifies the relationship between AD genetic risk factors and long-term cognitive trajectories in a large sample of individuals with normal cognition. Methods: Analyses used data from the Preclinical AD Consortium, including harmonized data from 5 longitudinal cohort studies. Participants were cognitively normal at baseline (M baseline age = 64 years, 59% female) and underwent 10 years of follow-up, on average. AD genetic risk was measured by (i) apolipoprotein-E (APOE) genetic status (APOE-ε2 and APOE-ε4 vs. APOE-ε3; N = 1819) and (ii) AD polygenic risk scores (AD-PRS; N = 1175). A CR index was calculated by combining years of education and literacy scores. Longitudinal cognitive performance was measured by harmonized factor scores for global cognition, episodic memory, and executive function. Results: In mixed-effects models, higher CR index scores were associated with better baseline cognitive performance for all cognitive outcomes. APOE-ε4 genotype and AD-PRS that included the APOE region (AD-PRSAPOE) were associated with declines in all cognitive domains, whereas AD-PRS that excluded the APOE region (AD-PRSw/oAPOE) was associated with declines in executive function and global cognition, but not memory. There were significant 3-way CR index score × APOE-ε4 × time interactions for the global (p = 0.04, effect size = 0.16) and memory scores (p = 0.01, effect size = 0.22), indicating the negative effect of APOE-ε4 genotype on global and episodic memory score change was attenuated among individuals with higher CR index scores. In contrast, levels of CR did not attenuate APOE-ε4-related declines in executive function or declines associated with higher AD-PRS. APOE-ε2 genotype was unrelated to cognition. Conclusions: These results suggest that APOE-ε4 and non-APOE-ε4 AD polygenic risk are independently associated with global cognitive and executive function declines among individuals with normal cognition at baseline, but only APOE-ε4 is associated with declines in episodic memory. Importantly, higher levels of CR may mitigate APOE-ε4-related declines in some cognitive domains. Future research is needed to address study limitations, including generalizability due to cohort demographic characteristics
    corecore