563 research outputs found

    HFB calculations with a microscopic pairing interaction

    Full text link
    Hartree-Fock-Bogolyubov (HFB) calculations making use of a recently proposed microscopic effective pairing interaction are presented. The interaction was shown to reproduce the pairing properties provided by the realistic AV18AV18 force very accurately in infinite matter. Although finite-ranged and non-local, it makes 3D HFB calculations in coordinate space tractable. As a first application, basic pairing properties of calcium isotopes in their ground-state are studied. By comparing the results with those obtained using a standard Density-Dependent Delta Interaction, the crucial isovector character of the microscopic interaction is highlighted.Comment: 6 pages, 6 figures. Proceedings of the Conference on Nuclei at the Limits, ANL, 2004. They will be published in the AIP Conference Proceedings Serie

    Pairing schemes for HFB calculations of nuclei

    Full text link
    Several pairing schemes currently used to describe superfluid nuclei through Hartree-Fock-Bogolyubov (HFB) calculations are briefly reviewed. We put a particular emphasis on the regularization recipes used in connection with zero-range forces and on the density dependence which usually complement their definition. Regarding the chosen regularization process, the goal is not only to identify the impact it may or may not have on pairing properties of nuclei through spherical 1D HFB calculations but also to assess its tractability for systematic axial 2D and 3D mean-field and beyond-mean-field calculations.Comment: 7 pages, 7 figures, Invited talk at the Workshop on New developments in Nuclear Self-Consistent Mean-Field Theories, Yukawa Institute for Theoretical Physics, Kyoto, Japan, May 30 - June 1, 2005, Yukawa Institute for Theoretical Physics Report Series (Soryushi-ron kenkyu

    Toward the Ab-initio Description of Medium Mass Nuclei

    Full text link
    As ab-initio calculations of atomic nuclei enter the A=40-100 mass range, a great challenge is how to approach the vast majority of open-shell (degenerate) isotopes. We add realistic three-nucleon interactions to the state of the art many-body Green's function theory of closed-shells, and find that physics of neutron driplines is reproduced with very good quality. Further, we introduce the Gorkov formalism to extend ab-initio theory to semi-magic, fully open-shell, isotopes. Proof-of-principle calculations for Ca-44 and Ni-74 confirm that this approach is indeed feasible. Combining these two advances (open-shells and three-nucleon interactions) requires longer, technical, work but it is otherwise within reach.Comment: Contribution to Summary Report of EURISOL Topical and Town Meetings, 15-19 October 2012; missing affiliations added and corrected errors in Tab

    Pairing in the Framework of the Unitary Correlation Operator Method (UCOM): Hartree-Fock-Bogoliubov Calculations

    Full text link
    In this first in a series of articles, we apply effective interactions derived by the Unitary Correlation Operator Method (UCOM) to the description of open-shell nuclei, using a self-consistent Hartree-Fock-Bogoliubov framework to account for pairing correlations. To disentangle the particle-hole and particle-particle channels and assess the pairing properties of \VUCOM, we consider hybrid calculations using the phenomenological Gogny D1S interaction to derive the particle-hole mean field. In the main part of this article, we perform calculations of the tin isotopic chain using \VUCOM in both the particle-hole and particle-particle channels. We study the interplay of both channels, and discuss the impact of non-central and non-local terms in realistic interactions as well as the frequently used restriction of pairing interactions to the 1S0{}^1S_0 partial wave. The treatment of the center-of-mass motion and its effect on theoretical pairing gaps is assessed independently of the used interactions.Comment: 14 pages, 10 figures, to appear in Phys. Rev. C, title modified accordingl

    Non-empirical pairing energy functional in nuclear matter and finite nuclei

    Full text link
    We study 1S0 pairing gaps in neutron and nuclear matter as well as in finite nuclei on the basis of microscopic two-nucleon interactions. Special attention is paid to the consistency of the pairing interaction and normal self-energy contributions. We find that pairing gaps obtained from low-momentum interactions depend only weakly on approximation schemes for the normal self-energy, required in present energy-density functional calculations, while pairing gaps from hard potentials are very sensitive to the effective-mass approximation scheme.Comment: 14 pages, 12 figures, published versio

    Shape Coexistence in Pb186: Beyond-mean-field description by configuration mixing of symmetry restored wave functions

    Get PDF
    We study shape coexistence in Pb186 using configuration mixing of angular-momentum and particle-number projected self-consistent mean-field states. The same Skyrme interaction SLy6 is used everywhere in connection with a density-dependent zero-range pairing force. The model predicts coexisting spherical, prolate and oblate 0+ states at low energy.Comment: 5 pages REVTEX4, 4 eps figures, accepted by Phys. Lett. B. Revised version with some polishing of the text without changing its conten

    Skyrme mean-field study of rotational bands in transfermium isotopes

    Get PDF
    Self-consistent mean field calculations with the SLy4 interaction and a density-dependent pairing force are presented for nuclei in the Nobelium mass region. Predicted quasi-particle spectra are compared with experiment for the heaviest known odd N and odd Z nuclei. Spectra and rotational bands are presented for nuclei around No252,4 for which experiments are either planned or already running.Comment: 13 pages LATEX, elsart style, 6 embedded eps figure

    Towards heavy-mass ab initio nuclear structure: Open-shell Ca, Ni and Sn isotopes from Bogoliubov coupled-cluster theory

    Full text link
    Recent developments in nuclear many-body theory enabled the description of open-shell medium-mass nuclei from first principles by exploiting the spontaneous breaking of symmetries within correlation expansion methods. Once combined with systematically improvable inter-nucleon interactions consistently derived from chiral effective field theory, modern ab initio nuclear structure calculations provide a powerful framework to deliver first-principle predictions accompanied with theoretical uncertainties. In this Letter, controlled ab initio Bogoliubov coupled cluster calculations are performed for the first time, targeting the ground-state of all calcium, nickel and tin isotopes up to mass A150A\approx150. While showing good agreement with available experimental data, the shell structure evolution in neutron-rich isotopes and the location of the neutron drip-lines are predicted.Comment: 7 pages, 5 figure

    Chiral three-nucleon forces and pairing in nuclei

    Full text link
    We present the first study of pairing in nuclei including three-nucleon forces. We perform systematic calculations of the odd-even mass staggering generated using a microscopic pairing interaction at first order in chiral low-momentum interactions. Significant repulsive contributions from the leading chiral three-nucleon forces are found. Two- and three-nucleon interactions combined account for approximately 70% of the experimental pairing gaps, which leaves room for self-energy and induced interaction effects that are expected to be overall attractive in nuclei.Comment: 4 pages, 3 figure
    corecore