63 research outputs found

    Alterations of adiponectin gene expression and DNA methylation in adipose tissues and blood cells are associated with gestational diabetes and neonatal outcome

    Get PDF
    BACKGROUND: Adiponectin critically contributes to metabolic homeostasis, especially by insulin-sensitizing action. Gestational diabetes mellitus (GDM) is characterized by insulin resistance leading to materno-fetal hyperglycemia and detrimental birth outcomes. By investigating paired subcutaneous (SAT) and visceral adipose tissue (VAT) as well as blood (cell) samples of GDM-affected (n = 25) vs. matched control (n = 30) mother-child dyads of the prospective "EaCH" cohort study, we addressed whether alterations of adiponectin plasma, mRNA, and DNA methylation levels are associated with GDM and offspring characteristics. RESULTS: Hypoadiponectinemia was present in women with GDM, even after adjustment for body mass index (BMI). This was accompanied by significantly decreased mRNA levels in both SAT and VAT (P < 0.05), independent of BMI. Maternal plasma adiponectin showed inverse relations with glucose and homeostatic model assessment of insulin resistance (both P < 0.01). In parallel to reduced mRNA expression in GDM, significant (P < 0.05) yet small alterations in locus-specific DNA methylation were observed in maternal fat (~ 2%) and blood cells (~ 1%). While newborn adiponectin levels were similar between groups, DNA methylation in GDM offspring was variously altered (~ 1-4%; P < 0.05). CONCLUSIONS: Reduced adiponectin seems to be a pathogenic co-factor in GDM, even independent of BMI, affecting materno-fetal metabolism. While altered maternal DNA methylation patterns appear rather marginally involved, functional, diagnostic, and/or predictive implications of cord blood DNA methylation should be further evaluated

    The roles of long-chain polyunsaturated fatty acids in pregnancy, lactation and infancy: review of current knowledge and consensus recommendations

    Get PDF
    This paper reviews current knowledge on the role of the long-chain polyunsaturated fatty acids (LC-PUFA), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (AA, 20:4n-6), in maternal and term infant nutrition as well as infant development. Consensus recommendations and practice guidelines for health-care providers supported by the World Association of Perinatal Medicine, the Early Nutrition Academy, and the Child Health Foundation are provided. The fetus and neonate should receive LC-PUFA in amounts sufficient to support optimal visual and cognitive development. Moreover, the consumption of oils rich in n-3 LC-PUFA during pregnancy reduces the risk for early premature birth. Pregnant and lactating women should aim to achieve an average daily intake of at least 200mg DHA. For healthy term infants, we recommend and fully endorse breastfeeding, which supplies preformed LC-PUFA, as the preferred method of feeding. When breastfeeding is not possible, we recommend use of an infant formula providing DHA at levels between 0.2 and 0.5 weight percent of total fat, and with the minimum amount of AA equivalent to the contents of DHA. Dietary LC-PUFA supply should continue after the first six months of life, but currently there is not sufficient information for quantitative recommendation
    • …
    corecore