18 research outputs found

    A FreeSurfer-compliant consistent manual segmentation of infant brains spanning the 0-2 year age range

    Get PDF
    We present a detailed description of a set of FreeSurfer compatible segmentation guidelines tailored to infant MRI scans, and a unique data set of manually segmented acquisitions, with subjects nearly evenly distributed between 0 and 2 years of age. We believe that these segmentation guidelines and this dataset will have a wide range of potential uses in medicine and neuroscience.Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant 1K99HD061485-01A1)Eunice Kennedy Shriver National Institute of Child Health and Human Development (U.S.) (Grant R00 HD061485-03)Ralph Schlaeger FellowshipNational Institutes of Health (U.S.) (1R01EB014947-01)National Institutes of Health (U.S.) (K23 NS42758-01)National Center for Research Resources (U.S.) (P41-RR14075)National Center for Research Resources (U.S.) (U24 RR021382)National Institutes of Health. National Institute for Biomedical Imaging and Bioengineering (R01EB006758)National Institute on Aging (AG022381)National Institute on Aging (5R01AG008122-22)National Institute of Neurological Disorders and Stroke (U.S.) (R01 NS052585-01)National Institute of Neurological Disorders and Stroke (U.S.) (1R21NS072652-01)National Institute of Neurological Disorders and Stroke (U.S.) (1R01NS070963)National Center for Research Resources (U.S.) (Shared Instrumentation Grant 1S10RR023401)National Center for Research Resources (U.S.) (Shared Instrumentation Grant 1S10RR019307)National Center for Research Resources (U.S.) (Shared Instrumentation Grant 1S10RR023043)Ellison Medical FoundationNational Institutes of Health. Blueprint for Neuroscience Research (5U01-MH093765)Human Connectome Projec

    White Matter Alterations in Infants at Risk for Developmental Dyslexia

    Full text link
    Developmental dyslexia (DD) is a heritable condition characterized by persistent difficulties in learning to read. White matter alterations in left-lateralized language areas, particularly in the arcuate fasciculus (AF), have been observed in DD, and diffusion properties within the AF correlate with (pre-)reading skills as early as kindergarten. However, it is unclear how early these alterations can be observed. We investigated white matter structure in 14 infants with (FHD+; ages 6.6-17.6 months) and 18 without (FHD-; ages 5.1-17.6 months) familial risk for DD. Diffusion scans were acquired during natural sleep, and early language skills were assessed. Tractography for bilateral AF was reconstructed using manual and automated methods, allowing for independent validation of results. Fractional anisotropy (FA) was calculated at multiple nodes along the tracts for more precise localization of group differences. The analyses revealed significantly lower FA in the left AF for FHD+ compared with FHD- infants, particularly in the central portion of the tract. Moreover, expressive language positively correlated with FA across groups. Our results demonstrate that atypical brain development associated with DD is already present within the first 18 months of life, suggesting that the deficits associated with DD may result from altered structural connectivity in left-hemispheric regions

    Can cerebellar and brainstem apparent diffusion coefficient (ADC) values predict neuromotor outcome in term neonates with hypoxic-ischemic encephalopathy (HIE) treated with hypothermia?

    No full text
    To determine the apparent diffusion coefficient (ADC) in specific infratentorial brain structures during the first week of life and its relation with neuromotor outcome for Hypoxic-ischemic encephalopathy (HIE) in term neonates with and without whole-body hypothermia (TH).We retrospectively evaluated 45 MRI studies performed in the first week of life of term neonates born between 2010 and 2013 at Boston Children's Hospital. Selected cases were classified into three groups: 1) HIE neonates who underwent TH, 2) HIE normothermics (TN), and 3) controls. The neuromotor outcome was categorized as normal, abnormal and death. The ADCmean was calculated for six infratentorial brain regions.A total of 45 infants were included: 28 HIE TH treated, 8 HIE TN, and 9 controls. The mean gestational age was 39 weeks; 57.8% were male; 11.1% were non-survivors. The median age at MRI was 3 days (interquartile range, 1-4 days). A statistically significant relationship was shown between motor outcome or death and the ADCmean in the vermis (P = 0.002), cerebellar left hemisphere (P = 0.002), midbrain (P = 0.009), pons (P = 0.014) and medulla (P = 0.005). In patients treated with TH, the ADC mean remained significantly lower than that in the controls only in the hemispheres (P = 0.01). In comparison with abnormal motor outcome, ADCmean was lowest in the left hemisphere (P = 0.003), vermis (P = 0.003), pons (P = 0.0036) and medulla (P = 0.008) in case of death.ADCmean values during the first week of life in the left hemisphere, vermis, pons and medulla are related to motor outcome or death in infants with HIE either with or without hypothermic therapy. Therefore, this objective tool can be assessed prospectively to determine if it can be used to establish prognosis in the first week of life, particularly in severe cases of HIE

    Can cerebellar and brainstem Apparent Diffusion Coefficient values predict neuromotor outcome in term neonates with HIE hypothermia-treated?.

    No full text
    Background and purpose To determine the apparent diffusion coefficient (ADC) in specific infratentorial brain structures during the first week of life and its relation with neuromotor outcome for Hypoxic-ischemic encephalopathy (HIE) in term neonates with and without whole-body hypothermia (TH). Materials and methods We retrospectively evaluated 45 MRI studies performed in the first week of life of term neonates born between 2010 and 2013 at Boston Children's Hospital. Selected cases were classified into three groups: 1) HIE neonates who underwent TH, 2) HIE normothermics (TN), and 3) controls. The neuromotor outcome was categorized as normal, abnormal and death. The ADCmean was calculated for six infratentorial brain regions. Results A total of 45 infants were included: 28 HIE TH treated, 8 HIE TN, and 9 controls. The mean gestational age was 39 weeks; 57.8% were male; 11.1% were non-survivors. The median age at MRI was 3 days (interquartile range, 1-4 days). A statistically significant relationship was shown between motor outcome or death and the ADCmean in the vermis (P = 0.002), cerebellar left hemisphere (P = 0.002), midbrain (P = 0.009), pons (P = 0.014) and medulla (P = 0.005). In patients treated with TH, the ADC mean remained significantly lower than that in the controls only in the hemispheres (P = 0.01). In comparison with abnormal motor outcome, ADCmean was lowest in the left hemisphere (P = 0.003), vermis (P = 0.003), pons (P = 0.0036) and medulla (P = 0.008) in case of death. Conclusion ADCmean values during the first week of life in the left hemisphere, vermis, pons and medulla are related to motor outcome or death in infants with HIE either with or without hypothermic therapy. Therefore, this objective tool can be assessed prospectively to determine if it can be used to establish prognosis in the first week of life, particularly in severe cases of HIE

    Can cerebellar and brainstem Apparent Diffusion Coefficient values predict neuromotor outcome in term neonates with HIE hypothermia-treated?.

    No full text
    Background and purpose To determine the apparent diffusion coefficient (ADC) in specific infratentorial brain structures during the first week of life and its relation with neuromotor outcome for Hypoxic-ischemic encephalopathy (HIE) in term neonates with and without whole-body hypothermia (TH). Materials and methods We retrospectively evaluated 45 MRI studies performed in the first week of life of term neonates born between 2010 and 2013 at Boston Children's Hospital. Selected cases were classified into three groups: 1) HIE neonates who underwent TH, 2) HIE normothermics (TN), and 3) controls. The neuromotor outcome was categorized as normal, abnormal and death. The ADCmean was calculated for six infratentorial brain regions. Results A total of 45 infants were included: 28 HIE TH treated, 8 HIE TN, and 9 controls. The mean gestational age was 39 weeks; 57.8% were male; 11.1% were non-survivors. The median age at MRI was 3 days (interquartile range, 1-4 days). A statistically significant relationship was shown between motor outcome or death and the ADCmean in the vermis (P = 0.002), cerebellar left hemisphere (P = 0.002), midbrain (P = 0.009), pons (P = 0.014) and medulla (P = 0.005). In patients treated with TH, the ADC mean remained significantly lower than that in the controls only in the hemispheres (P = 0.01). In comparison with abnormal motor outcome, ADCmean was lowest in the left hemisphere (P = 0.003), vermis (P = 0.003), pons (P = 0.0036) and medulla (P = 0.008) in case of death. Conclusion ADCmean values during the first week of life in the left hemisphere, vermis, pons and medulla are related to motor outcome or death in infants with HIE either with or without hypothermic therapy. Therefore, this objective tool can be assessed prospectively to determine if it can be used to establish prognosis in the first week of life, particularly in severe cases of HIE
    corecore