435 research outputs found
Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals
We observe experimentally that ensembles of quantum dots in three-dimensional (3D) photonic crystals reveal strongly nonexponential time-resolved emission. These complex emission decay curves are analyzed with a continuous distribution of decay rates. The log-normal distribution describes the decays well for all studied lattice parameters. The distribution width is identified with variations of the radiative emission rates of quantum dots with various positions and dipole orientations in the unit cell. We find a striking sixfold change of the width of the distribution by varying the lattice parameter. This interpretation qualitatively agrees with the calculations of the 3D projected local density of states. We therefore conclude that fluorescence decay of ensembles of quantum dots is highly nonexponential to an extent that is controlled by photonic crystals
Backaction in metasurface etalons
We consider the response of etalons created by a combination of a
conventional mirror and a metasurface, composed of a periodic lattice of metal
scatterers with a resonant response. This geometry has been used previously for
perfect absorption, in so-called Salisbury screens, and for hybridization of
localized plasmons with Fabry-Perot resonances. The particular aspect we
address is if one can assume an environment-independent reflectivity for the
metasurface when calculating the reflectivity of the composite system, as in a
standard Fabry-Perot analysis, or whether the fact that the metasurface
interacts with its own mirror image renormalizes its response. Using lattice
sum theory, we take into account all possible retarded dipole-dipole
interactions of scatterers in the metasurface amongst each other, and through
the mirror. We show that while a layer-by-layer Fabry-Perot formalism captures
the main qualitative features of metasurface etalons, in fact the mirror
modifies both the polarizability and reflectivity of the metasurface in a
fashion that is akin to Drexhage's modification of the radiative properties of
a single dipole.Comment: 10 pages, 5 figure
Spontaneous radiative decay of translational levels of an atom near a dielectric surface
We study spontaneous radiative decay of translational levels of an atom in
the vicinity of a semi-infinite dielectric. We systematically derive the
microscopic dynamical equations for the spontaneous decay process. We calculate
analytically and numerically the radiative linewidths and the spontaneous
transition rates for the translational levels. The roles of the interference
between the emitted and reflected fields and of the transmission into the
evanescent modes are clearly identified. Our numerical calculations for the
silica--cesium interaction show that the radiative linewidths of the bound
excited levels with large enough but not too large vibrational quantum numbers
are moderately enhanced by the emission into the evanescent modes and those for
the deep bound levels are substantially reduced by the surface-induced red
shift of the transition frequency
Statistical properties of spontaneous emission near a rough surface
We study the lifetime of the excited state of an atom or molecule near a
plane surface with a given random surface roughness. In particular, we discuss
the impact of the scattering of surface modes within the rough surface. Our
study is completed by considering the lateral correlation length of the decay
rate and the variance discussing its relation to the C0 correlation
Metallo-dielectric hybrid antennas for ultrastrong enhancement of spontaneous emission
We devise new optical antennas that reduce the excited-state radiative
lifetimes of emitters to the order of 100 femtoseconds while maintaining
quantum efficiencies of about 80% at a broadband operation. Here, we combine
metallic nanoparticles with planar dielectric structures and exploit design
strategies from plasmonic nanoantennas and concepts from Cavity Quantum
Electrodynamics to maximize the local density of states and minimize the
nonradiative losses incurred by the metallic constituents. The proposed
metallo-dielectric hybrid antennas promise important impact on various
fundamental and applied research fields, including photophysics, ultrafast
plasmonics, bright single photon sources and Raman spectroscopy
Observation of modified radiative properties of cold atoms in vacuum near a dielectric surface
We have observed a distance-dependent absorption linewidth of cold Rb
atoms close to a dielectric-vacuum interface. This is the first observation of
modified radiative properties in vacuum near a dielectric surface. A cloud of
cold atoms was created using a magneto-optical trap (MOT) and optical molasses
cooling. Evanescent waves (EW) were used to observe the behavior of the atoms
near the surface. We observed an increase of the absorption linewidth with up
to 25% with respect to the free-space value. Approximately half the broadening
can be explained by cavity-quantum electrodynamics (CQED) as an increase of the
natural linewidth and inhomogeneous broadening. The remainder we attribute to
local Stark shifts near the surface. By varying the characteristic EW length we
have observed a distance dependence characteristic for CQED.Comment: 6 pages, 6 figures, some minor revision
Excitated state properties of 20-chloro-chlorophyll a
The excited-state and lasing properties of 20-chloro-chlorophyll a in ether solution were compared to those of chlorophyll a. Desactivation parameters and cross-sections were obtained from non-linear absorption spectroscopy in combination with a physico-mathematical methods package. The Cl substituent at C-20 (1) increases both intersystem crossing and internal conversion, (2) produces a blue-shift of the S1 absorption spectrum, and (3) leads to pronounced photochemistry
- …