1,244 research outputs found

    Susceptibility of salt marshes to nutrient enrichment and predator removal

    Get PDF
    Salt marsh ecosystems have been considered not susceptible to nitrogen overloading because early studies suggested that salt marshes adsorbed excess nutrients in plant growth. However, the possible effect of nutrient loading on species composition, and the combined effects of nutrients and altered species composition on structure and function, was largely ignored. Failure to understand interactions between nutrient loading and species composition may lead to severe underestimates of the impacts of stresses. We altered whole salt marsh ecosystems (similar to 60 000 m(2)/treatment) by addition of nutrients in flooding waters and by reduction of a key predatory fish, the mummichog. We added nutrients (N and P; 15-fold increase over ambient conditions) directly to the flooding tide to mimic the way anthropogenic nutrients are delivered to marsh ecosystems. Despite the high concentrations (70 mmol N/L) achieved in the water column, our annual N loadings (15-60 g N.m(-2).yr(-1)) were an order of magnitude less than most plot-level fertilization experiments, yet we detected responses at several trophic levels. Preliminary calculations suggest that 30-40% of the added N was removed by the marsh during each tidal cycle. Creek bank Spartina alterniflora and high marsh S. patens production increased, but not stunted high marsh S. alterniflora. Microbial production increased in the fertilized creek bank S. alterniflora habitat where benthic microalgae also increased. We found top-down control of benthic microalgae by killifish, but only under nutrient addition and in the opposite direction (increase) than that predicted by a fish-invertebrate-microalgae trophic cascade. Surprisingly, infauna declined in abundance during the first season of fertilization and with fish removal. Our results demonstrate ecological effects of both nutrient addition and mummichog reduction at the whole-system level, including evidence for synergistic interactions

    Avoiding Dangerous Missense: Thermophiles Display Especially Low Mutation Rates

    Get PDF
    Rates of spontaneous mutation have been estimated under optimal growth conditions for a variety of DNA-based microbes, including viruses, bacteria, and eukaryotes. When expressed as genomic mutation rates, most of the values were in the vicinity of 0.003–0.004 with a range of less than two-fold. Because the genome sizes varied by roughly 104-fold, the mutation rates per average base pair varied inversely by a similar factor. Even though the commonality of the observed genomic rates remains unexplained, it implies that mutation rates in unstressed microbes reach values that can be finely tuned by evolution. An insight originating in the 1920s and maturing in the 1960s proposed that the genomic mutation rate would reflect a balance between the deleterious effect of the average mutation and the cost of further reducing the mutation rate. If this view is correct, then increasing the deleterious impact of the average mutation should be countered by reducing the genomic mutation rate. It is a common observation that many neutral or nearly neutral mutations become strongly deleterious at higher temperatures, in which case they are called temperature-sensitive mutations. Recently, the kinds and rates of spontaneous mutations were described for two microbial thermophiles, a bacterium and an archaeon. Using an updated method to extrapolate from mutation-reporter genes to whole genomes reveals that the rate of base substitutions is substantially lower in these two thermophiles than in mesophiles. This result provides the first experimental support for the concept of an evolved balance between the total genomic impact of mutations and the cost of further reducing the basal mutation rate

    Mutation Size Optimizes Speciation in an Evolutionary Model

    Get PDF
    The role of mutation rate in optimizing key features of evolutionary dynamics has recently been investigated in various computational models. Here, we address the related question of how maximum mutation size affects the formation of species in a simple computational evolutionary model. We find that the number of species is maximized for intermediate values of a mutation size parameter μ; the result is observed for evolving organisms on a randomly changing landscape as well as in a version of the model where negative feedback exists between the local population size and the fitness provided by the landscape. The same result is observed for various distributions of mutation values within the limits set by μ. When organisms with various values of μ compete against each other, those with intermediate μ values are found to survive. The surviving values of μ from these competition simulations, however, do not necessarily coincide with the values that maximize the number of species. These results suggest that various complex factors are involved in determining optimal mutation parameters for any population, and may also suggest approaches for building a computational bridge between the (micro) dynamics of mutations at the level of individual organisms and (macro) evolutionary dynamics at the species level

    Unique technique of surgery in an unusual variety of Scimitar syndrome: A Case Report

    Get PDF
    Scimitar syndrome is a rare congenital anomaly characterized by total or partial anomalous pulmonary venous drainage of the right lung to the inferior vena cava. We present a seven year old girl with a systolic murmur who was diagnosed as having a Scimitar syndrome with unusual drainage of the right pulmonary veins. The unique technique of surgery in this patient was appropriate to the unusual, previously not described anatomy

    Non-random pre-transcriptional evolution in HIV-1. A refutation of the foundational conditions for neutral evolution

    Get PDF
    The complete base sequence of HIV-1 virus and GP120 ENV gene were analyzed to establish their distance to the expected neutral random sequence. An especial methodology was devised to achieve this aim. Analyses included: a) proportion of dinucleotides (signatures); b) homogeneity in the distribution of dinucleotides and bases (isochores) by dividing both segments in ten and three sub-segments, respectively; c) probability of runs of bases and No-bases according to the Bose-Einstein distribution. The analyses showed a huge deviation from the random distribution expected from neutral evolution and neutral-neighbor influence of nucleotide sites. The most significant result is the tremendous lack of CG dinucleotides (p < 10-50 ), a selective trait of eukaryote and not of single stranded RNA virus genomes. Results not only refute neutral evolution and neutral neighbor influence, but also strongly indicate that any base at any nucleotide site correlates with all the viral genome or sub-segments. These results suggest that evolution of HIV-1 is pan-selective rather than neutral or nearly neutral

    Superoxide dismutase A antigens derived from molecular analysis of sarcoidosis granulomas elicit systemic Th-1 immune responses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sarcoidosis is an idiopathic granulomatous disease with pathologic and immunologic features similar to tuberculosis. Routine histologic staining and culture fail to identify infectious agents. An alternative means for investigating a role of infectious agents in human pathogenesis involves molecular analysis of pathologic tissues for microbial nucleic acids, as well as recognition of microbial antigens by the host immune system. Molecular analysis for superoxide dismutase A (sodA) allows speciation of mycobacteria. SodA is an abundantly secreted virulence factor that generates cellular immune responses in infected hosts. The purpose of this study is to investigate if target antigens of the sarcoidosis immune response can be identified by molecular analysis of sarcoidosis granulomas.</p> <p>Methods</p> <p>We detected sodA amplicons in 12 of 17 sarcoidosis specimens, compared to 2 of 16 controls (p = 0.001, two-tailed Fisher's exact test), and 3 of 3 tuberculosis specimens (p = 0.54). Analysis of the amplicons revealed sequences identical to <it>M. tuberculosis </it>(MTB) complex, as well as sequences which were genetically divergent. Using peripheral blood mononuclear cells (PBMC) from 12 of the 17 sarcoidosis subjects, we performed enzyme-linked immunospot assay (ELISPOT) to assess for immune recognition of MTB sodA peptides, along with PBMC from 26 PPD- healthy volunteers, and 11 latent tuberculosis subjects.</p> <p>Results</p> <p>Six of 12 sarcoidosis subjects recognized the sodA peptides, compared to one of 26 PPD- controls (p = 0.002), and 6/11 PPD+ subjects (p = .68). Overall, 10 of the 12 sarcoidosis subjects from whom we obtained PBMC and archival tissue possessed molecular or immunologic evidence for sodA.</p> <p>Conclusion</p> <p>Dual molecular and immunologic analysis increases the ability to find infectious antigens. The detection of Th-1 immune responses to sodA peptides derived from molecular analysis of sarcoidosis granulomas reveals that these are among the target antigens contributing to sarcoidosis granulomatous inflammation.</p

    Epidemiology of Doublet/Multiplet Mutations in Lung Cancers: Evidence that a Subset Arises by Chronocoordinate Events

    Get PDF
    BACKGROUND: Evidence strongly suggests that spontaneous doublet mutations in normal mouse tissues generally arise from chronocoordinate events. These chronocoordinate mutations sometimes reflect "mutation showers", which are multiple chronocoordinate mutations spanning many kilobases. However, little is known about mutagenesis of doublet and multiplet mutations (domuplets) in human cancer. Lung cancer accounts for about 25% of all cancer deaths. Herein, we analyze the epidemiology of domuplets in the EGFR and TP53 genes in lung cancer. The EGFR gene is an oncogene in which doublets are generally driver plus driver mutations, while the TP53 gene is a tumor suppressor gene with a more typical situation in which doublets derive from a driver and passenger mutation. METHODOLOGY/PRINCIPAL FINDINGS: EGFR mutations identified by sequencing were collected from 66 published papers and our updated EGFR mutation database (www.egfr.org). TP53 mutations were collected from IARC version 12 (www-p53.iarc.fr). For EGFR and TP53 doublets, no clearly significant differences in race, ethnicity, gender and smoking status were observed. Doublets in the EGFR and TP53 genes in human lung cancer are elevated about eight- and three-fold, respectively, relative to spontaneous doublets in mouse (6% and 2.3% versus 0.7%). CONCLUSIONS/SIGNIFICANCE: Although no one characteristic is definitive, the aggregate properties of doublet and multiplet mutations in lung cancer are consistent with a subset derived from chronocoordinate events in the EGFR gene: i) the eight frameshift doublets (present in 0.5% of all patients with EGFR mutations) are clustered and produce a net in-frame change; ii) about 32% of doublets are very closely spaced (< or =30 nt); and iii) multiplets contain two or more closely spaced mutations. TP53 mutations in lung cancer are very closely spaced (< or =30 nt) in 33% of doublets, and multiplets generally contain two or more very closely spaced mutations. Work in model systems is necessary to confirm the significance of chronocoordinate events in lung and other cancers
    • …
    corecore