13 research outputs found
Multi-source Multimodal Data and Deep Learning for Disaster Response: A Systematic Review.
Mechanisms for sharing information in a disaster situation have drastically changed due to new technological innovations throughout the world. The use of social media applications and collaborative technologies for information sharing have become increasingly popular. With these advancements, the amount of data collected increases daily in different modalities, such as text, audio, video, and images. However, to date, practical Disaster Response (DR) activities are mostly depended on textual information, such as situation reports and email content, and the benefit of other media is often not realised. Deep Learning (DL) algorithms have recently demonstrated promising results in extracting knowledge from multiple modalities of data, but the use of DL approaches for DR tasks has thus far mostly been pursued in an academic context. This paper conducts a systematic review of 83 articles to identify the successes, current and future challenges, and opportunities in using DL for DR tasks. Our analysis is centred around the components of learning, a set of aspects that govern the application of Machine learning (ML) for a given problem domain. A flowchart and guidance for future research are developed as an outcome of the analysis to ensure the benefits of DL for DR activities are utilized.Publishe
Active Hydrothermal Features as Tourist Attractions
Tourists are looking increasingly for adventurous experiences by exploring unusual and interesting landscapes. Active volcanic and hydrothermal landscapes and their remarkable manifestations of geysers, fumaroles and boiling mud ponds are some of the surface features that fascinate visitors of National Parks, Geoparks and World Heritage areas worldwide. The uniqueness of hydrothermal activity based on volcanism has provided popular tourist attractions in many countries for several thousand years. The Romans for example have used hydrothermal springs on the Italian island Ischia and visited the Campi Flegrei for recreational purposes. In Iceland the original Geysir already attracted international visitors over 150 years ago, who came to observe this spectacular hydrothermal phenomenon. In Greece and Turkey volcanic hot springs have historically provided attractive destinations, as well as in New Zealand, Japan and the Americas. The fact that locations with hydrothermal activity based on active volcanism have acquired various forms of protected site status, adds a further dimension to their attraction and demonstrates a significant contribution to sustainable and nature based tourism. Countries such as Iceland, New Zealand and Japan have a long tradition of using hydrothermal activity in its various forms to offer tourists a unique natural experience. These environments however are also known for their unpredictable and potentially hostile nature, as the use of hydrothermal features as a natural resource for tourism does harbour certain risks with the potential to affect human health and safety. Hydrothermal systems have erupted in the past, thereby causing the destruction of their immediate environment. Depending on the level of magnitude explosions of super heated water and steam mixed with fractured rocks and hot mud can be violent enough to create craters varying in size from a few metres to several hundred metres in diameter. Apart from unexpected eruptions of hydrothermal vents with the potential to cause thermal burns, further risk factors include seismic activity such as earthquakes, lethal gas emissions of hydrogen sulphide (H2S) as well as ground instability through hydrothermal alteration. While it is essential to prevent injuries to tourists the management of hydrothermal hazards remains problematic. Precursory signs are not well understood by the general public and the communication of imminent danger is frequently unachievable. As a consequence serious thought needs to be given to the risk factors and the potential danger of areas in the proximity of active hydrothermal manifestations such as extreme hot springs and geysers. To improve the safety standards in hydrothermal landscapes that are used as main features in tourism, strategic guidelines for best practice management must cover ALL active volcanic and hydrothermal areas. This chapter looks at management issues at hydrothermal destinations with special consideration of areas where these unique features are integrated as tourist attractions. Examples from destinations traditionally based on active volcanic and hydrothermal phenomena are presented as case studies to highlight the risk management processes in individual countries. Potential hazards in volcanic and hydrothermal areas are assessed with a focus on the prevention of accidents and injuries to tourists
Reporting on the seminar - risk interpretation and action (RIA): decision making under conditions of uncertainty
The paper reports on the World Social Science (WSS) Fellows seminar on Risk Interpretation and Action (RIA), undertaken in New Zealand in December, 2013. This seminar was coordinated by the WSS Fellows program of the International Social Science Council (ISSC), the RIA working group of the Integrated Research on Disaster Risk (IRDR) program, the IRDR International Center of Excellence Taipei, the International START Secretariat and the Royal Society of New Zealand. Twenty-five early career researchers from around the world were selected to review the RIA framework under the theme of ‘decision-making under conditions of uncertainty’, and develop novel theoretical approaches to respond to and improve this framework. Six working groups emerged during the seminar: 1. the assessment of water-related risks in megacities; 2. rethinking risk communication; 3. the embodiment of uncertainty; 4. communication in resettlement and reconstruction phases; 5. the integration of indigenous knowledge in disaster risk reduction; and 6. multi-scale policy implementation for natural hazard risk reduction. This article documents the seminar and initial outcomes from the six groups organized; and conludes with the collective views of the participants on the RIA framework
Decision-Making: Preventing Miscommunication and Creating Shared Meaning Between Stakeholders
The effective management and response to either volcanic eruptions or (often prolonged) periods of heightened unrest, is fundamentally dependent upon effective relationships and communication between science advisors, emergency managers and key decision makers. To optimise the effectiveness of the scientific contribution to effective prediction and management decision making, it is important for science advisors or scientific advisory bodies to be cognisant of the many different perspectives, needs and goals of the diverse organisations involved in the response. Challenges arise for scientists as they may need to be embedded members of the wider response multi-agency team, rather than independent contributors of essential information. Thus they must add to their competencies an understanding of the different roles, responsibilities, and needs of each member organisation, such that they can start to provide information implicitly rather than in response to explicit requests. To build this shared understanding, the team situational awareness (understanding of the situation in time and space), and the wider team mental model (a representation of the team functions and responsibilities), requires participating in a response environment together. Facilitating the availability of this capability has training and organizational development implications for scientific agencies and introduces a need for developing new inter-agency relationships and liaison mechanisms well before a volcanic crisis occurs. In this chapter, we review individual and team decision making, and the role of situational awareness and mental models in creating “shared meaning” between agencies. The aim is to improve communication and information sharing, as well as furthering the understanding of the impact that uncertainty has upon communication and ways to manage this. We then review personal and organisational factors that can impact response and conclude with a brief review of methods available to improve future response capability, and the importance of protocols and guidelines to assist this in a national or international context.</p
Rethinking communication in risk interpretation and action
Communication is fundamental to the transfer of information between individuals, agencies and organizations, and therefore, it is crucial to planning and decision-making particularly in cases of uncertainty and risk. This paper brings forth some critical aspects of communication that need to be acknowledged and considered while managing risks. Most of the previous studies and theories on natural hazards and disaster management have limited perspective on communication, and hence, its implication is limited to awareness, warnings and emergency response to some selected events. This paper exposes the role of communication as a moderator of not just risk interpretation and action but also various factors responsible for shaping overall response, such as individual decision-making under uncertainty, heuristics, past experiences, learning, trust, complexity, scale and the social context. It suggests that communication is a process that influences decision-making in multiple ways, and therefore, it plays a critical role in shaping local responses to various risks. It opens up the scope for using communication beyond its current use as a tool to manage emergency situations. An in-depth understanding of ongoing communication and its implications can help to plan risk management more effectively over time rather than as a short-term response