28 research outputs found

    Genetic Resistance to Malaria Is Associated With Greater Enhancement of Immunoglobulin (Ig)M Than IgG Responses to a Broad Array of Plasmodium falciparum Antigens

    Get PDF
    Background. People of the Fulani ethnic group are more resistant to malaria compared with genetically distinct ethnic groups, such as the Dogon people, in West Africa, and studies suggest that this resistance is mediated by enhanced antibody responses to Plasmodium falciparum antigens. However, prior studies measured antibody responses to <0.1% of P falciparum proteins, so whether the Fulani mount an enhanced and broadly reactive immunoglobulin (Ig)M and IgG response to P falciparum remains unknown. In general, little is known about the extent to which host genetics influence the overall antigen specificity of IgM and IgG responses to natural infections. Methods. In a cross-sectional study in Mali, we collected plasma from asymptomatic, age-matched Fulani (n = 24) and Dogon (n = 22) adults with or without concurrent P falciparum infection. We probed plasma against a protein microarray containing 1087 P falciparum antigens and compared IgM and IgG profiles by ethnicity. Results. We found that the breadth and magnitude of P falciparum-specific IgM and IgG responses were significantly higher in the malaria-resistant Fulani versus the malaria-susceptible Dogon, and, unexpectedly, P falciparum-specific IgM responses more strongly distinguished the 2 ethnic groups. Conclusions. These findings point to an underappreciated role for IgM in protection from malaria, and they suggest that host genetics may influence the antigen specificity of IgM and IgG responses to infection

    Memory CD8 + T cell compartment associated with delayed onset of Plasmodium falciparum infection and better parasite control in sickle‐cell trait children

    Get PDF
    Study of individuals with protection from Plasmodium falciparum (Pf) infection and clinical malaria, including individuals affected by the sickle-cell trait (HbAS), offers the potential to identify cellular targets that could be translated for therapeutic development. We previously reported the first involvement of cellular immunity in HbAS-associated relative protection and identified a novel subset of memory-activated NK cells that was enriched in HbAS children and associated with parasite control. We hypothesised that other memory cell subsets might distinguish the baseline profile of HbAS children and children with normal haemoglobin (HbAA). Subsets of memory T cells and NK cells were analysed by flow cytometry in paired samples collected from HbAS and HbAA children, at baseline and during the first malaria episode of the ensuing transmission season. Correlations between cell frequencies and features of HbAS-mediated protection from malaria were determined. HbAS children displayed significantly higher frequency of memory CD8+ T cells at baseline than HbAA children. Baseline frequency of memory CD8+ T cells correlated with features of HbAS-mediated protection from malaria. Exploration of memory CD8+ T cell subsets revealed that central memory CD8+ T cell frequency was higher in HbAS children than in HbAA children. This study shows that HbAS children develop a larger memory CD8+ T cell compartment than HbAA children, and associates this compartment with better control of subsequent onset of infection and parasite density. Our data suggest that central memory CD8+ T cells may play an important role in the relative protection against malaria experienced by HbAS individuals, and further work to investigate this is warranted

    Exposure-Dependent Control of Malaria-Induced Inflammation in Children

    No full text
    In malaria-naïve individuals, Plasmodium falciparum infection results in high levels of parasite-infected red blood cells (iRBCs) that trigger systemic inflammation and fever. Conversely, individuals in endemic areas who are repeatedly infected are often asymptomatic and have low levels of iRBCs, even young children. We hypothesized that febrile malaria alters the immune system such that P. falciparum re-exposure results in reduced production of pro-inflammatory cytokines/chemokines and enhanced anti-parasite effector responses compared to responses induced before malaria. To test this hypothesis we used a systems biology approach to analyze PBMCs sampled from healthy children before the six-month malaria season and the same children seven days after treatment of their first febrile malaria episode of the ensuing season. PBMCs were stimulated with iRBC in vitro and various immune parameters were measured. Before the malaria season, children's immune cells responded to iRBCs by producing pro-inflammatory mediators such as IL-1β, IL-6 and IL-8. Following malaria there was a marked shift in the response to iRBCs with the same children's immune cells producing lower levels of pro-inflammatory cytokines and higher levels of anti-inflammatory cytokines (IL-10, TGF-β). In addition, molecules involved in phagocytosis and activation of adaptive immunity were upregulated after malaria as compared to before. This shift was accompanied by an increase in P. falciparum-specific CD4+Foxp3- T cells that co-produce IL-10, IFN-γ and TNF; however, after the subsequent six-month dry season, a period of markedly reduced malaria transmission, P. falciparum-inducible IL-10 production remained partially upregulated only in children with persistent asymptomatic infections. These findings suggest that in the face of P. falciparum re-exposure, children acquire exposure-dependent P. falciparum-specific immunoregulatory responses that dampen pathogenic inflammation while enhancing anti-parasite effector mechanisms. These data provide mechanistic insight into the observation that P. falciparum-infected children in endemic areas are often afebrile and tend to control parasite replication

    The Plasmodium falciparum-Specific Human Memory B Cell Compartment Expands Gradually with Repeated Malaria Infections

    Get PDF
    Immunity to Plasmodium falciparum (Pf) malaria is only acquired after years of repeated infections and wanes rapidly without ongoing parasite exposure. Antibodies are central to malaria immunity, yet little is known about the B-cell biology that underlies the inefficient acquisition of Pf-specific humoral immunity. This year-long prospective study in Mali of 185 individuals aged 2 to 25 years shows that Pf-specific memory B-cells and antibodies are acquired gradually in a stepwise fashion over years of repeated Pf exposure. Both Pf-specific memory B cells and antibody titers increased after acute malaria and then, after six months of decreased Pf exposure, contracted to a point slightly higher than pre-infection levels. This inefficient, stepwise expansion of both the Pf-specific memory B-cell and long-lived antibody compartments depends on Pf exposure rather than age, based on the comparator response to tetanus vaccination that was efficient and stable. These observations lend new insights into the cellular basis of the delayed acquisition of malaria immunity

    Treatment of Chronic Asymptomatic Plasmodium falciparum Infection Does Not Increase the Risk of Clinical Malaria Upon Reinfection.

    Get PDF
    : Chronic asymptomatic Plasmodium falciparum infections are common in endemic areas and are thought to contribute to the maintenance of malaria immunity. Whether treatment of these infections increases the subsequent risk of clinical episodes of malaria is unclear. : In a 3-year study in Mali, asymptomatic individuals with or without P. falciparum infection at the end of the 6-month dry season were identified by polymerase chain reaction (PCR), and clinical malaria risk was compared during the ensuing 6-month malaria transmission season. At the end of the second dry season, 3 groups of asymptomatic children were identified: (1) children infected with P. falciparum as detected by rapid diagnostic testing (RDT) who were treated with antimalarials (n = 104), (2) RDT-negative children whose untreated P. falciparum infections were detected retrospectively by PCR (n = 55), and (3) uninfected children (RDT/PCR negative) (n = 434). Clinical malaria risk during 2 subsequent malaria seasons was compared. Plasmodium falciparum-specific antibody kinetics during the dry season were compared in children who did or did not harbor asymptomatic P. falciparum infections. : Chronic asymptomatic P. falciparum infection predicted decreased clinical malaria risk during the subsequent malaria season(s); treatment of these infections did not alter this reduced risk. Plasmodium falciparum-specific antibodies declined similarly in children who did or did not harbor chronic asymptomatic P. falciparum infection during the dry season. : These findings challenge the notion that chronic asymptomatic P. falciparum infection maintains malaria immunity and suggest that mass drug administration during the dry season should not increase the subsequent risk of clinical malaria.<br/

    Increased circulation time of Plasmodium falciparum underlies persistent asymptomatic infection in the dry season

    Get PDF
    The dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood. Here we show that low levels of P. falciparum parasites persist in the blood of asymptomatic Malian individuals during the 5- to 6-month dry season, rarely causing symptoms and minimally affecting the host immune response. Parasites isolated during the dry season are transcriptionally distinct from those of individuals with febrile malaria in the transmission season, coinciding with longer circulation within each replicative cycle of parasitized erythrocytes without adhering to the vascular endothelium. Low parasite levels during the dry season are not due to impaired replication but rather to increased splenic clearance of longer-circulating infected erythrocytes, which likely maintain parasitemias below clinical and immunological radar. We propose that P. falciparum virulence in areas of seasonal malaria transmission is regulated so that the parasite decreases its endothelial binding capacity, allowing increased splenic clearance and enabling several months of subclinical parasite persistence

    B cell analysis of ethnic groups in Mali with differential susceptibility to malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies indicate that people of the Fulani ethnic group are less susceptible to malaria compared to those of other ethnic groups living sympatrically in Africa, including the Dogon ethnic group. Although the mechanisms of this protection remain unclear, the Fulani are known to have higher levels of <it>Plasmodium falciparum</it>-specific antibodies of all Ig classes as compared to the Dogon. However, the proportions of B cell subsets in the Fulani and Dogon that may account for differences in the levels of Ig have not been characterized.</p> <p>Methods</p> <p>In this cross-sectional study, venous blood was collected from asymptomatic Fulani (n = 25) and Dogon (n = 25) adults in Mali during the malaria season, and from <it>P. falciparum</it>-naïve adults in the U.S. (n = 8). At the time of the blood collection, <it>P. falciparum</it> infection was detected by blood-smear in 16% of the Fulani and 36% of the Dogon volunteers. Thawed lymphocytes were analysed by flow cytometry to quantify B cell subsets, including immature and naïve B cells; plasma cells; and classical, activated, and atypical memory B cells (MBCs).</p> <p>Results</p> <p>The overall distribution of B cell subsets was similar between Fulani and Dogon adults, although the percentage of activated MBCs was higher in the Fulani group (Fulani: 11.07% [95% CI: 9.317 – 12.82]; Dogon: 8.31% [95% CI: 6.378 – 10.23]; P = 0.016). The percentage of atypical MBCs was similar between Fulani and Dogon adults (Fulani: 28.3% [95% CI: 22.73 – 34.88]; Dogon: 29.3% [95% CI: 25.06 – 33.55], but higher than U.S. adults (U.S.: 3.0% [95% CI: -0.21 - 6.164]; P < 0.001). <it>Plasmodium falciparum</it> infection was associated with a higher percentage of plasma cells among Fulani (Fulani infected: 3.3% [95% CI: 1.788 – 4.744]; Fulani uninfected: 1.71% [95% CI: 1.33 – 2.08]; P = 0.011), but not Dogon adults.</p> <p>Conclusion</p> <p>These data show that the malaria-resistant Fulani have a higher percentage of activated MBCs compared to the Dogon, and that <it>P. falciparum</it> infection is associated with a higher percentage of plasma cells in the Fulani compared to the Dogon, findings that may account for the higher levels of <it>P. falciparum</it> antibodies in the Fulani.</p

    Factors associated with decreased Plasmodium falciparum infection risk in Malian children.

    No full text
    Malaria control efforts remain suboptimal for many reasons including knowledge gaps in malaria epidemiology and immunology. To better understand the epidemiologic and immunologic factors associated with risk of P. falciparum infection and clinical malaria, we conducted a longitudinal cohort study of 695 individuals aged 3 months to 25 years in the rural village of Kalifabougou, Mali. We did bi-weekly active surveillance for P. falciparum infection by PCR and weekly active clinical surveillance for clinical malaria. Nearly all adults and children over four years of age became infected during the malaria season at a rate that was independent of age (log-rank test, p =.37), indicating that sterile immunity to P. falciparum infection is not acquired through natural exposure; and as expected, the risk of clinical malaria decreased with increasing age (logrank test, p =.0038). Surprisingly, we observed that children under 4 years of age were less likely to be infected with P. falciparum compared to older subjects (p <0.0001), and indeed, 24% of children under 4 years of age remained PCR negative throughout the intense 6-month malaria season. Exposure was measured by antibody response to gSG6, an Anopheles gambiae specific salivary protein, and results indicate that uninfected children were less likely to have serologic evidence of exposure to the mosquito vector over the course of the malaria season. Self-reported bed net use was not different between infected and uninfected children. Because evidence of decreased exposure did not fully explain decreased infection risk in young children, we are taking several approaches to test the hypothesis that uninfected children have enhanced pre-erythrocytic immunity and/or that developmental differences render young children less permissive to P. falciparum infection. Findings from this study may help inform strategies to prevent P. falciparum infection in malaria endemic areas

    In Vitro Growth-Inhibitory Activity and Malaria Risk in a Cohort Study in Mali▿ †

    No full text
    Immunity to the asexual blood stage of Plasmodium falciparum is complex and likely involves several effector mechanisms. Antibodies are thought to play a critical role in malaria immunity, and a corresponding in vitro correlate of antibody-mediated immunity has long been sought to facilitate malaria vaccine development. The growth inhibition assay (GIA) measures the capacity of antibodies to limit red blood cell (RBC) invasion and/or growth of P. falciparum in vitro. In humans, naturally acquired and vaccine-induced P. falciparum-specific antibodies have growth-inhibitory activity, but it is unclear if growth-inhibitory activity correlates with protection from clinical disease. In a longitudinal study in Mali, purified IgGs, obtained from plasmas collected before the malaria season from 220 individuals aged 2 to 10 and 18 to 25 years, were assayed for growth-inhibitory activity. Malaria episodes were recorded by passive surveillance over the subsequent 6-month malaria season. Logistic regression showed that greater age (odds ratio [OR], 0.78; 95% confidence interval [95% CI], 0.63 to 0.95; P = 0.02) and growth-inhibitory activity (OR, 0.50; 95% CI, 0.30 to 0.85; P = 0.01) were significantly associated with decreased malaria risk in children. A growth-inhibitory activity level of 40% was determined to be the optimal cutoff for discriminating malaria-immune and susceptible individuals in this cohort, with a sensitivity of 97.0%, but a low specificity of 24.3%, which limited the assay's ability to accurately predict protective immunity and to serve as an in vitro correlate of antibody-mediated immunity. These data suggest that antibodies which block merozoite invasion of RBC and/or inhibit the intra-RBC growth of the parasite contribute to but are not sufficient for the acquisition of malaria immunity
    corecore