7,879 research outputs found

    Non-thermal X-ray and Gamma-ray Emission from the Colliding Wind Binary WR140

    Get PDF
    WR140 is the archetype long-period colliding wind binary (CWB) system, and is well known for dramatic variations in its synchrotron emission during its 7.9-yr, highly eccentric orbit. This emission is thought to arise from relativistic electrons accelerated at the global shocks bounding the wind-collision region (WCR). The presence of non-thermal electrons and ions should also give rise to X-ray and gamma-ray emission from several separate mechanisms, including inverse-Compton cooling, relativistic bremsstrahlung, and pion decay. We describe new calculations of this emission and make some preliminary predictions for the new generation of gamma-ray observatories. We determine that WR140 will likely require several Megaseconds of observation before detection with INTEGRAL, but should be a reasonably strong source for GLAST.Comment: 4 pages, 1 figure, contribution to "Massive Stars and High-Energy Emission in OB Associations"; JENAM 2005, held in Liege (Belgium

    General Scheme for Perfect Quantum Network Coding with Free Classical Communication

    Full text link
    This paper considers the problem of efficiently transmitting quantum states through a network. It has been known for some time that without additional assumptions it is impossible to achieve this task perfectly in general -- indeed, it is impossible even for the simple butterfly network. As additional resource we allow free classical communication between any pair of network nodes. It is shown that perfect quantum network coding is achievable in this model whenever classical network coding is possible over the same network when replacing all quantum capacities by classical capacities. More precisely, it is proved that perfect quantum network coding using free classical communication is possible over a network with kk source-target pairs if there exists a classical linear (or even vector linear) coding scheme over a finite ring. Our proof is constructive in that we give explicit quantum coding operations for each network node. This paper also gives an upper bound on the number of classical communication required in terms of kk, the maximal fan-in of any network node, and the size of the network.Comment: 12 pages, 2 figures, generalizes some of the results in arXiv:0902.1299 to the k-pair problem and codes over rings. Appeared in the Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP'09), LNCS 5555, pp. 622-633, 200

    Flight and wind-tunnel correlation of boundary-layer transition on the AEDC transition cone

    Get PDF
    Transition and fluctuating surface pressure data were acquired on a 10 deg included angle cone, using the same instrumentation and technique over a wide range of Mach and Reynolds numbers in 23 wind tunnels and in flight. Transition was detected with a traversing pitot-pressure probe in contact with the surface. The surface pressure fluctuations were measured with microphones set flush in the cone surface. Good correlation of end of transition Reynolds number RE(T) was obtained between data from the lower disturbance wind tunnels and flight up to a boundary layer edge Mach number, M(e) = 1.2. Above M(e) = 1.2, however, this correlation deteriorates, with the flight Re(T) being 25 to 30% higher than the wind tunnel Re(T) at M(e) = 1.6. The end of transition Reynolds number correlated within + or - 20% with the surface pressure fluctuations, according to the equation used. Broad peaks in the power spectral density distributions indicated that Tollmien-Schlichting waves were the probable cause of transition in flight and in some of the wind tunnels

    In-flight transition measurement on a 10 deg cone at Mach numbers from 0.5 to 2.0

    Get PDF
    Boundary layer transition measurements were made in flight on a 10 deg transition cone tested previously in 23 wind tunnels. The cone was mounted on the nose of an F-15 aircraft and flown at Mach numbers room 0.5 to 2.0 and altitudes from 1500 meters (5000 feet) to 15,000 meters (50,000 feet), overlapping the Mach number/Reynolds number envelope of the wind tunnel tests. Transition was detected using a traversing pitot probe in contact with the surface. Data were obtained near zero cone incidence and adiabatic wall temperature. Transition Reynolds number was found to be a function of Mach number and of the ratio of wall temperature to adiabatic all temperature. Microphones mounted flush with the cone surface measured free-stream disturbances imposed on the laminar boundary layer and identified Tollmien-Schlichting waves as the probable cause of transition. Transition Reynolds number also correlated with the disturbance levels as measured by the cone surface microphones under a laminar boundary layer as well as the free-stream impact

    Variability in Saturn's bow shock and magnetopause from pioneer and voyager: Probabilistic predictions and initial observations by Cassini

    Get PDF
    Probability distributions for the location of the Saturnian bow shock and magnetopause have been derived by extrapolating observations of dynamic solar wind pressures to the position of Saturn's orbit. These observations are those made by the Pioneer 11, Voyager 1 and 2 spacecraft near Saturn's orbit and by the Ulysses spacecraft near its aphelion. The magnetopause subsolar distance (measured from Saturn's center) is obtained using pressure equilibrium. The bow shock standoff distance is determined using empirical relations between bow shock size and solar wind dynamic pressure. Simple 2-D geometric models of the magnetopause and bow shock surfaces have been used to determine their morphologies over a large range in local time. Three cases have been studied: (1) An Earth-type magnetosphere with low internal plasma pressure; (2) An intermediate case calibrated with Voyager 1 observations; and (3) A Jupiter-like inflated magnetosphere. The comparison of these models with initial observations from the initial sunward orbits of the Cassini spacecraft indicates a more inflated magnetosphere than postulated by the previous modelling of the Pioneer-Voyager encounters
    • …
    corecore