30 research outputs found

    Comparte la felicidad, educando sobre sexualidad con ciudadanos y ciudadanas habitantes de calle

    Get PDF
    Curso de Especial InterésLos habitantes de calle (en adelante CHC) se han convertido en una problemática social debido a la desarticulación, violencia y pobreza de la sociedad colombiana. A partir de esta situación se diseñó y elaboró la cartilla “Comparte la felicidad, educando sobre sexualidad con Ciudadanos y Ciudadanas Habitantes de calle” que aborda los cuatro holones de la sexualidad: Vinculación afectiva, erotismo, género y reproductividad, con el objetivo de promover la salud sexual y reproductiva, y la prevención de Infecciones de transmisión sexual, incluido el VIH/SIDA. Para identificar el contenido de la cartilla se realizó una entrevista estructurada de la cual se obtuvo la información a incluir en la cartilla, posteriormente validada en la unidad OASIS.Curso de Especial Interés1. Resumen 2. Justificación 3. Marco teórico 4. Objetivos de la investigación 5. Métodología 6. Estudio de mercado 7. Resultados 8. Discusión 9. Conclusiones 10. Recomendaciones 11. Referencias 12. ApéndicesPregradoPsicólog

    Malleable Machines in Transcription Regulation: The Mediator Complex

    Get PDF
    The Mediator complex provides an interface between gene-specific regulatory proteins and the general transcription machinery including RNA polymerase II (RNAP II). The complex has a modular architecture (Head, Middle, and Tail) and cryoelectron microscopy analysis suggested that it undergoes dramatic conformational changes upon interactions with activators and RNAP II. These rearrangements have been proposed to play a role in the assembly of the preinitiation complex and also to contribute to the regulatory mechanism of Mediator. In analogy to many regulatory and transcriptional proteins, we reasoned that Mediator might also utilize intrinsically disordered regions (IDRs) to facilitate structural transitions and transmit transcriptional signals. Indeed, a high prevalence of IDRs was found in various subunits of Mediator from both Saccharomyces cerevisiae and Homo sapiens, especially in the Tail and the Middle modules. The level of disorder increases from yeast to man, although in both organisms it significantly exceeds that of multiprotein complexes of a similar size. IDRs can contribute to Mediator's function in three different ways: they can individually serve as target sites for multiple partners having distinctive structures; they can act as malleable linkers connecting globular domains that impart modular functionality on the complex; and they can also facilitate assembly and disassembly of complexes in response to regulatory signals. Short segments of IDRs, termed molecular recognition features (MoRFs) distinguished by a high protein–protein interaction propensity, were identified in 16 and 19 subunits of the yeast and human Mediator, respectively. In Saccharomyces cerevisiae, the functional roles of 11 MoRFs have been experimentally verified, and those in the Med8/Med18/Med20 and Med7/Med21 complexes were structurally confirmed. Although the Saccharomyces cerevisiae and Homo sapiens Mediator sequences are only weakly conserved, the arrangements of the disordered regions and their embedded interaction sites are quite similar in the two organisms. All of these data suggest an integral role for intrinsic disorder in Mediator's function

    The Functions of Mediator in Candida albicans Support a Role in Shaping Species-Specific Gene Expression

    Get PDF
    The Mediator complex is an essential co-regulator of RNA polymerase II that is conserved throughout eukaryotes. Here we present the first study of Mediator in the pathogenic fungus Candida albicans. We focused on the Middle domain subunit Med31, the Head domain subunit Med20, and Srb9/Med13 from the Kinase domain. The C. albicans Mediator shares some roles with model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, such as functions in the response to certain stresses and the role of Med31 in the expression of genes regulated by the activator Ace2. The C. albicans Mediator also has additional roles in the transcription of genes associated with virulence, for example genes related to morphogenesis and gene families enriched in pathogens, such as the ALS adhesins. Consistently, Med31, Med20, and Srb9/Med13 contribute to key virulence attributes of C. albicans, filamentation, and biofilm formation; and ALS1 is a biologically relevant target of Med31 for development of biofilms. Furthermore, Med31 affects virulence of C. albicans in the worm infection model. We present evidence that the roles of Med31 and Srb9/Med13 in the expression of the genes encoding cell wall adhesins are different between S. cerevisiae and C. albicans: they are repressors of the FLO genes in S. cerevisiae and are activators of the ALS genes in C. albicans. This suggests that Mediator subunits regulate adhesion in a distinct manner between these two distantly related fungal species

    Structure and TBP binding of the Mediator head subcomplex Med8–Med18–Med20

    No full text
    The Mediator head module stimulates basal RNA polymerase II (Pol II) transcription and enables transcriptional regulation. Here we show that the head subunits Med8, Med18 and Med20 form a subcomplex (Med8/18/20) with two submodules. The highly conserved N-terminal domain of Med8 forms one submodule that binds the TATA box–binding protein (TBP) in vitro and is essential in vivo. The second submodule consists of the C-terminal region of Med8 (Med8C), Med18 and Med20. X-ray analysis of this submodule reveals that Med18 and Med20 form related beta-barrel folds. A conserved putative protein-interaction face on the Med8C/18/20 submodule includes sites altered by srb mutations, which counteract defects resulting from Pol II truncation. Our results and published data support a positive role of the Med8/18/20 subcomplex in initiation-complex formation and suggest that the Mediator head contains a multipartite TBP-binding site that can be modulated by transcriptional activators

    Pharmacogenetic testing in the Veterans Health Administration (VHA): policy recommendations from the VHA Clinical Pharmacogenetics Subcommittee

    No full text
    PurposeThe Veterans Health Administration (VHA) Clinical Pharmacogenetics Subcommittee is charged with making recommendations about whether specific pharmacogenetic tests should be used in healthcare at VHA facilities. We describe a process to inform VHA pharmacogenetic testing policy.MethodsAfter developing consensus definitions of clinical validity and utility, the Subcommittee identified salient drug-gene pairs with potential clinical application in VHA. Members met monthly to discuss each drug-gene pair, the evidence of clinical utility for the associated pharmacogenetic test, and any VHA-specific testing considerations. The Subcommittee classified each test as strongly recommended, recommended, or not routinely recommended before drug initiation.ResultsOf 30 drug-gene pair tests reviewed, the Subcommittee classified 4 (13%) as strongly recommended, including HLA-B*15:02 for carbamazepine-associated Stevens-Johnston syndrome and G6PD for rasburicase-associated hemolytic anemia; 12 (40%) as recommended, including CYP2D6 for codeine toxicity; and 14 (47%) as not routinely recommended, such as CYP2C19 for clopidogrel dosing.ConclusionOnly half of drug-gene pairs with high clinical validity received Subcommittee support for policy promoting their widespread use across VHA. The Subcommittee generally found insufficient evidence of clinical utility or available, effective alternative strategies for the remainders. Continual evidence review and rigorous outcomes research will help promote the translation of pharmacogenetic discovery to healthcare
    corecore