3,541 research outputs found

    The Victors of Finance: How Federal Connections to Corporate Wealth Weakened Reforms in the 2008 Financial Crisis

    Get PDF
    This research details the economic policies enacted in the late twentieth and earlier twenty-first centuries which laid the groundwork for the 2008 financial crisis. It evaluates the degree to which the Federal Government’s policies were influenced by corporate wealth on Wall Street. The secondary mortgage market is emphasized as a key area in which the Federal government incentivized predatory lending. The research posits that the Federal government’s financial ties with Wall Street weakened reforms in the 2008 financial crisis. Further, that it caused a national loss of housing and wealth, particularly for residents of color

    A comparative study of CO adsorption on flat, stepped and kinked Au surfaces using density functional theory

    Full text link
    Our ab initio calculations of CO adsorption energies on low miller index (111), (100), stepped (211), and kinked (532) gold surfaces show a strong dependence on local coordination with a reduction in Au atom coordination leading to higher binding energies. We find trends in adsorption energies to be similar to those reported in experiments and calculations for other metal surfaces. The (532) surface provides insights into these trends because of the availability of a large number of kink sites which naturally have the lowest coordination (6). We also find that, for all surfaces, an increase in CO coverage triggers a decrease in the adsorption energy. Changes in the work-function upon CO adsorption, as well as the frequencies of the CO vibrational modes are calculated, and their coverage dependence is reported.Comment: 18 pages, 4 figure

    The relative efficiency of time-to-progression and continuous measures of cognition in presymptomatic Alzheimer's disease.

    Get PDF
    IntroductionClinical trials on preclinical Alzheimer's disease are challenging because of the slow rate of disease progression. We use a simulation study to demonstrate that models of repeated cognitive assessments detect treatment effects more efficiently than models of time to progression.MethodsMultivariate continuous data are simulated from a Bayesian joint mixed-effects model fit to data from the Alzheimer's Disease Neuroimaging Initiative. Simulated progression events are algorithmically derived from the continuous assessments using a random forest model fit to the same data.ResultsWe find that power is approximately doubled with models of repeated continuous outcomes compared with the time-to-progression analysis. The simulations also demonstrate that a plausible informative missing data pattern can induce a bias that inflates treatment effects, yet 5% type I error is maintained.DiscussionGiven the relative inefficiency of time to progression, it should be avoided as a primary analysis approach in clinical trials of preclinical Alzheimer's disease

    Applications of neuroimaging to disease-modification trials in Alzheimer's disease.

    Get PDF
    Critical to development of new therapies for Alzheimer's disease (AD) is the ability to detect clinical or pathological change over time. Clinical outcome measures typically used in therapeutic trials have unfortunately proven to be relatively variable and somewhat insensitive to change in this slowly progressive disease. For this reason, development of surrogate biomarkers that identify significant disease-associated brain changes are necessary to expedite treatment development in AD. Since AD pathology is present in the brain many years prior to clinical manifestation, ideally we want to develop biomarkers of disease that identify abnormal brain structure or function even prior to cognitive decline. Magnetic resonance imaging, fluorodeoxyglucose positron emission tomography, new amyloid imaging techniques, and spinal fluid markers of AD all have great potential to provide surrogate endpoint measures for AD pathology. The Alzheimer's disease neuroimaging initiative (ADNI) was developed for the distinct purpose of evaluating surrogate biomarkers for drug development in AD. Recent evidence from ADNI demonstrates that imaging may provide more sensitive, and earlier, measures of disease progression than traditional clinical measures for powering clinical drug trials in Alzheimer's disease. This review discusses recently presented data from the ADNI dataset, and the importance of imaging in the future of drug development in AD

    Wavelet analysis of bender element signals

    Get PDF

    Analysis of longitudinal bunching inan FEL driven two-beam accelerator

    Get PDF
    Recent experiments [1] have explored the use of a free-electron laser (FEL) as a buncher for a microwave two-beam accelerator, and the subsequent driving of a standing-wave rf output cavity. Here we present a deeper analysis of the longitudinal dynamics of the electron bunches as they are transported from the end of the FEL and through the output cavity. In particular, we examine the effect of the transport region and cavity aperture to filter the bunched portion of the beam. [1] T. Lefevre, et. al., Phys. Rev. Lett. 84 (2000), 1188.Comment: 3 pages, 8 figures. Submitted to XX Int'l LINAC Conferenc

    Axial anomaly and magnetism of nuclear and quark matter

    Full text link
    We consider the response of the QCD ground state at finite baryon density to a strong magnetic field B. We point out the dominant role played by the coupling of neutral Goldstone bosons, such as pi^0, to the magnetic field via the axial triangle anomaly. We show that, in vacuum, above a value of B ~ m_pi^2/e, a metastable object appears - the pi^0 domain wall. Because of the axial anomaly, the wall carries a baryon number surface density proportional to B. As a result, for B ~ 10^{19} G a stack of parallel pi^0 domain walls is energetically more favorable than nuclear matter at the same density. Similarly, at higher densities, somewhat weaker magnetic fields of order B ~ 10^{17}-10^{18} G transform the color-superconducting ground state of QCD into new phases containing stacks of axial isoscalar (eta or eta') domain walls. We also show that a quark-matter state known as ``Goldstone current state,'' in which a gradient of a Goldstone field is spontaneously generated, is ferromagnetic due to the axial anomaly. We estimate the size of the fields created by such a state in a typical neutron star to be of order 10^{14}-10^{15} G.Comment: 18 pages, v2: added a discussion of the energy cost of neutralizing the domain wall charg
    • …
    corecore