13 research outputs found

    Perfectly matched layers for frequency-domain integral equation acoustic scattering problems

    Get PDF
    Simulations of acoustic wavefields in inhomogeneous media are always performed on finite numerical domains. If contrasts actually extend over the domain boundaries of the numerical volume, unwanted, non-physical reflections from the boundaries will occur. One technique to suppress these reflections is to attenuate them in a locally reflectionless absorbing boundary layer enclosing the spatial computational domain, a perfectly matched layer (PML). This technique is commonly applied in time-domain simulation methods like finite element methods or finite-difference time-domain, but has not been applied to the integral equation method. In this paper, a PML formulation for the three-dimensional frequency-domain integral-equation-based acoustic scattering problem is derived. Three-dimensional acoustic scattering configurations are used to test the PML formulation. The results demonstrate that strong attenuation (a factor of 200 in amplitude) of the scattered pressure field is achieved for thin layers with a thickness of less than a wavelength, and that the PMLs themselves are virtually reflectionless. In addition, it is shown that the integral equation method, both with and without PMLs, accurately reproduces pressure fields by comparing the obtained results with analytical solutions

    Iterative reconstruction of the transducer surface velocity

    Get PDF
    Ultrasound arrays used for medical imaging consist of many elements placed closely together. Ideally, each element vibrates independently. However, because of mechanical coupling, crosstalk between neighboring elements may occur. To quantify the amount of crosstalk, the transducer velocity distribution should be measured. In this work, a method is presented to reconstruct the velocity distribution from far-field pressure field measurements acquired over an arbitrary surface. The distribution is retrieved from the measurements by solving an integral equation, derived from the Rayleigh integral of the first kind, using a conjugate gradient inversion scheme. This approach has the advantages that it allows for arbitrary transducer and pressure field measurement geometries, as well as the application of regularization techniques. Numerical experiments show that measuring the pressure field along a hemisphere enclosing the transducer yields significantly more accurate reconstructions than measuring along a parallel plane. In addition, it is shown that an increase in accuracy is achieved when the assumption is made that all points on the transducer surface vibrate in phase. Finally, the method has been tested on an actual transducer with an active element of 700 × 200 μm which operates at a center frequency of 12.2 MHz. For this transducer, the velocity distribution has been reconstructed accurately to within 50 μm precision from pressure measurements at a distance of 1.98 mm (=16λ0) using a 200-μm-diameter needle hydrophone

    Skewed X-inactivation is common in the general female population

    Get PDF
    X-inactivation is a well-established dosage compensation mechanism ensuring that X-chromosomal genes are expressed at comparable levels in males and females. Skewed X-inactivation is often explained by negative selection of one of the alleles. We demonstrate that imbalanced expression of the paternal and maternal X-chromosomes is common in the general population and that the random nature of the X-inactivation mechanism can be sufficient to explain the imbalance. To this end, we analyzed blood-derived RNA and whole-genome sequencing data from 79 female children and their parents from the Genome of the Netherlands project. We calculated the median ratio of the paternal over total counts at all X-chromosomal heterozygous single-nucleotide variants with coverage ≥10. We identified two individuals where the same X-chromosome was inactivated in all cells. Imbalanced expression of the two X-chromosomes (ratios ≤0.35 or ≥0.65) was observed in nearly 50% of the population. The empirically observed skewing is explained by a theoretical model where X-inactivation takes place in an embryonic stage in which eight cells give rise to the hematopoietic compartment. Genes escaping X-inactivation are expressed from both alleles and therefore demonstrate less skewing than inactivated genes. Using this characteristic, we identified three novel escapee genes (SSR4, REPS2, and SEPT6), but did not find support for many previously reported escapee genes in blood. Our collective data suggest that skewed X-inactivation is common in the general population. This may contribute to manifestation of symptoms in carriers of recessive X-linked disorders. We recommend that X-inactivation results should not be used lightly in the interpretation of X-linked variants

    An ultrasound cylindrical phased array for deep heating in the breast: theoretical design using heterogeneous models

    No full text
    The objective of this theoretical study is to design an ultrasound (US) cylindrical phased array that can be used for hyperthermia (40-44 degrees C) treatment of tumours in the intact breast. Simultaneously, we characterize the influence of acoustic and thermal heterogeneities on the specific absorption rate (SAR) and temperature patterns to determine the necessity of using heterogeneous models for a US applicator design and treatment planning. Cylindrical configurations of monopole transducers are studied on their ability to generate interference patterns that can be steered electronically to the location of the target region. Hereto, design parameters such as frequency, number of transducers per ring, ring distance and number of rings are optimized to obtain a small primary focus, while suppressing secondary foci. The models account for local heterogeneities in both acoustic (wave velocity and absorption) and thermal (blood perfusion rate, heat capacity and conductivity) tissue properties. We used breast models with a central tumour (30 x 20 x 38 mm(3)) and an artificial thorax tumour (sphere with a radius of 25 mm) to test the design. Simulations predict that a US cylindrical phased array, consisting of six rings with 32 transducers per ring, a radius of 75 mm and 66 mm distance between the first and sixth transducer ring, operating at a frequency of 100 kHz, can be used to obtain 44 degrees C in the centre of tumours located anywhere in the intact breast. The dimensions of the volumes enclosed by the 41 degrees C iso-temperature are 19 x 19 x 21 mm(3) and 21 x 21 x 32 mm(3) for the central and the thorax tumours, respectively. It is demonstrated that acoustic and thermal heterogeneities do not disturb the SAR and temperature patterns

    An ultrasound cylindrical phased array for deep heating in the breast:theoretical design using heterogeneous models

    No full text
    \u3cp\u3eThe objective of this theoretical study is to design an ultrasound (US) cylindrical phased array that can be used for hyperthermia (40-44 degrees C) treatment of tumours in the intact breast. Simultaneously, we characterize the influence of acoustic and thermal heterogeneities on the specific absorption rate (SAR) and temperature patterns to determine the necessity of using heterogeneous models for a US applicator design and treatment planning. Cylindrical configurations of monopole transducers are studied on their ability to generate interference patterns that can be steered electronically to the location of the target region. Hereto, design parameters such as frequency, number of transducers per ring, ring distance and number of rings are optimized to obtain a small primary focus, while suppressing secondary foci. The models account for local heterogeneities in both acoustic (wave velocity and absorption) and thermal (blood perfusion rate, heat capacity and conductivity) tissue properties. We used breast models with a central tumour (30x20x38 mm3) and an artificial thorax tumour (sphere with a radius of 25 mm) to test the design. Simulations predict that a US cylindrical phased array, consisting of six rings with 32 transducers per ring, a radius of 75 mm and 66 mm distance between the first and sixth transducer ring, operating at a frequency of 100 kHz, can be used to obtain 44 degrees C in the centre of tumours located anywhere in the intact breast. The dimensions of the volumes enclosed by the 41 degrees C iso-temperature are 19x19x21 mm3 and 21x21x32 mm3 for the central and the thorax tumours, respectively. It is demonstrated that acoustic and thermal heterogeneities do not disturb the SAR and temperature patterns.\u3c/p\u3

    Research on waterlogging and interventions in Ricanau Mofo: Scientific study on mitigating water nuisance through socio-technical intervention assessment

    No full text
    This research addresses how Ricanau Mofo, a low-lying village in Surinam, can become a more water-adaptive and sustainable village, while it faces land erosion, river bank erosion, changing rainfall patterns and sea level rise. It is urgent to intervene, as these issues are expected to increase in occurrence due to climate change. Constraints and limitations that are important to take into account are cultural preservation, maintaining accessibility to the Cottica River, the limited availability of financial resources and the need for a low-maintenance intervention.Three strategies are proposed. The first focuses on addressing land erosion. Planting vegetation on critically eroding areas is a short term measure, while the long-term involves constructing footpaths with drainage channels. This not only mitigates soil erosion, but also regulates water and is relatively cost efficient. The second strategy targets the river bank erosion, which includes wooden bulkheads with vegetation and stones for short term implementation. For the long term, a river bank protection system with groynes is designed, to break waves, slow down the stream velocity and in time causes land gain. As the long term plans require external financial aid, a business case is set up and shared with the captain of Ricanau Mofo, STEORR, the District Commissioner and the Ministry of Public Works. The third strategy addresses water damage in the urban environment. Short-term it consists of providing building guidelines of where to build more water adaptive, and how. This is placed on an informational board in the village. The long-term contains a flood early warning system and recommended equipment.This project's significance lies in identifying interventions that are effective against erosion and water damage while being locally implementable in the rural areas of Surinam. It can be seen as a pilot project that is scalable to other villages along the Cottica River or in the whole of Surinam. However, there are limitations to the project. The most important is the lack of data quantity and data quality. This caused implications for dimensioning the interventions and their financial impact. Another limitation is that the project does not create ‘dry feet’ for the village; it creates a way of mitigating water damage while living next to the Cottica River. In addition, there is a limitation in the financing of follow-up projects. Therefore, a business case is also being delivered to the Ministry of Public Works, the District Commissioner of Marowijne South-West and the captain of Ricanau Mofo. They can use it to apply for funds from international organisations and include it in future policy plans. To summarise, Ricanau Mofo can become more water adaptive by regulating how to build and where, by continuing the prototype of the bulkheads by planting more vegetation and, by requesting financial aid for the river bank protection long term. As Figure 0.2 shows, it not only contributes as a report, but also in a tangible form of a prototype and in educational information boards in the local language to enhance the continuity and help the village.Civil EngineeringDesign for InteractionCivil Engineering | Environmental EngineeringCivil Engineering | Hydraulic EngineeringCivil Engineering | Construction Management and EngineeringCivil Engineering | Structural Engineerin

    Investigation of source position uncertainties & balloon deformation in MammoSite brachytherapy on treatment effectiveness

    No full text
    The MammoSite® breast high dose rate brachytherapy is used in treatment of early-stage breast cancer. The tumour bed volume is irradiated with high dose per fraction in a relatively small number of fractions. Uncertainties in the source positioning and MammoSite balloon deformation will alter the prescribed dose within the treated volume. They may also expose the normal tissues in balloon proximity to excessive dose. The purpose of this work is to explore the impact of these two uncertainties on the MammoSite dose distribution in the breast using dose volume histograms and Monte Carlo simulations. The Lyman–Kutcher and relative seriality models were employed to estimate the normal tissues complications associated with the MammoSite dose distributions. The tumour control probability was calculated using the Poisson model. This study gives low probabilities for developing heart and lung complications. The probability of complications of the skin and normal breast tissues depends on the location of the source inside the balloon and the volume receiving high dose. Incorrect source position and balloon deformation had significant effect on the prescribed dose within the treated volume. A 4 mm balloon deformation resulted in reduction of the tumour control probability by 24%. Monte Carlo calculations using EGSnrc showed that a deviation of the source by 1 mm caused approximately 7% dose reduction in the treated target volume at 1 cm from the balloon surface. In conclusion, accurate positioning of the 192Ir source at the balloon centre and minimal balloon deformation are critical for proper dose delivery with the MammoSite brachytherapy applicator. On the basis of this study, we suggest that the MammoSite treatment protocols should allow for a balloon deformation of ≤2 mm and a maximum source deviation of ≤1 mm.S. Bensaleh, E. Beza
    corecore