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Abstract—Simulations of acoustic wavefields in inhomogeneous
media are always performed on finite numerical domains. If
contrasts in reality extend over the domain boundaries of
the numerical volume, unwanted, unphysical reflections off the
boundaries will occur. One technique to suppress these reflections
is to attenuate them in a locally and reflectionless absorbing
boundary layer enclosing the spatial computational domain, a
Perfectly Matched Layer (PML). This technique is commonly
applied in time-domain simulation methods like FEM and FDTD,
but has not been applied to the integral equation method. In this
paper, a PML formulation for the three-dimensional frequency
domain integral equation based acoustic scattering problem is
derived. Three-dimensional acoustic scattering configurationsare
used to test the PML formulation. The results demonstrate that
strong attenuation (a factor of200 in amplitude) of the scattered
pressure field is achieved for thin layers with a thickness of less
than a wavelength, and that the PMLs themselves are virtually
reflectionless. In addition, it is shown that the integral equation
method, both with and without PMLs, accurately reproduces
pressure fields by comparing the obtained results with analytical
solutions.

Index Terms—Acoustics, Integral equations, Diffraction, Re-
flection, Refraction, Scattering, Propagation

I. I NTRODUCTION

Numerical acoustic simulations can roughly be divided into
three categories. First, there are computationally efficient
methods operating within the Born approximation, as used
in e.g. the Field II software [1]. However, due to strong
assumptions, the Born approximation yields incomplete and
inaccurate results [2].

The second category is composed of time domain tech-
niques which operate beyond the Born approximation. Ex-
amples are finite difference time domain (FDTD) [3] and
finite element methods (FEM) [4]. Although these methods
in general yield better results, as they include e.g. multiple
scattering, they require a dense spatial sampling of up to20
elements per wavelength, especially in the contrast regions,
and thus large amounts of memory.

The third category consists of methods which simulate
acoustic scattering in the frequency domain by solving the
scatter integral equation [5], [6], [7] by means of an inversion
scheme. If treated carefully, these methods require a signifi-
cantly coarser grid than FEM or FDTD and hence a reduced
memory load. One such approach will be used in the remainder
of this paper.

Fig. 1. Time frames of a wave field propagating in a three-dimensional
breast model. The bottom left figure shows the sound velocity map of the
corresponding slice. The velocities range, from blue to red, from 1478−1610

m/s and the background medium is water (c = 1524 m/s). The source is
located outside the numerical domain. The top left figure showsthe wave field,
including the unwanted additional reflections off the domainboundaries. In
the top right figure the spurious reflections are suppressed by a thin absorbing
layer enclosing the domain. The inner boundary of this layer is indicated by
the black line. Color version can be found online.Media-color 1

The spatial numerical domain is required to be finite due to
hardware restrictions. This requirement, however, introduces a
significant problem if the acoustical contrast extends overthe
boundary of the spatial numerical domain. In these situations,
the acoustic waves propagating through the contrast towards
the domain boundary will experience a sharp change in
contrast at the edge of the numerical domain. This leads to
additional, unwanted reflections off the boundaries in the sim-
ulated wave fields, which need to be removed or suppressed.

This problem is clearly visible in Figure 1. Both top figures
show the same time frame of the wave field propagating
through a three-dimensional breast model with water as back-
ground medium, see bottom left figure. For both cases the
volume is insonified by a Gaussian ultrasonic pulse which
propagates through the breast and is scattered by the inho-
mogeneities in the breast. The simulations are based on the
scatter integral equation discussed later on in this paper.

In the top left figure, in addition to the scattered field a
reflection off the domain boundary is clearly visible. This
reflection is due to the finiteness of the spatial numerical
domain. In the top right figure, this reflection is suppressed
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and only scattering due to contrastinsidethe spatial numerical
domain is modelled. Note that inhomogeneities outside the
numerical domain cannot be taken into account using a finite
domain, regardless of which simulation technique is used.

In order to suppress the unwanted reflections off the spatial
domain boundaries, several techniques have been devised. The
conceptually easiest technique is tapering: gradually reducing
the contrast functions towards the domain boundaries. If this
reduction is gradual enough with respect to wavelength, no
reflection will occur as no discontinuities are present. Unfor-
tunately, this requires thick layers which significantly increase
the memory load and the computational time.

A different technique, commonly found in FDTD, is based
on the absorbing boundary condition (ABC) [8]. A major
problem with this technique, however, is that the attenuation is
strongly angle dependent. Consequently, the boundary is not
reflectionless for most angles.

Instead of using tapering or ABCs, in this work we will re-
search the application of boundarylayerswith absorbing (ma-
terial) properties to the integral equation method. This method
has the advantages that the angular dependence problem of the
ABC is reduced and, if applied properly, a significantly thinner
layer as compared to tapering can be used. However, care has
to be taken that no reflections occur off the boundaries of
the absorbing layer instead. A technique with strong attenua-
tion and guaranteed reflectionless absorption is the Perfectly
Matched Layer (PML). This technique was originally devel-
oped for two dimensional electromagnetic wave problems [9]
and later on expanded to three dimensional problems [10],
[11]. Others have applied the method to elastodynamic wave
fields [12], [13], [14] and acoustic wave fields [15], [16].

To the best of our knowledge, the PML formulation has
never been applied to integral equation methods for acoustic
scattering problems. In this paper we derive a PML for-
mulation for the integral equation and implement this to
show its effectiveness for acoustic scattering integral equation
problems.

Note that PMLs are not applied to account for the scattering
occurring outside the spatial numerical domain, but only
to allow for truncation of the domain without introducing
additional, unwanted reflections. Truncation of the spatial
numerical domain will omit all the acoustic contrast outside
the numerical domain and hence yield incomplete results.

II. T HEORY

Before we derive a PML formulation of the scatter integral
equation, first the non-PML version will be discussed [5],
followed by the PML theory based on [17]. This theory is
then applied to the scatter integral equation.

In figure 2 the various spatial domains used throughout
this paper are defined. Let~r denote a vector in the infinitely
extended spatial domainDtot. Domain D is the domain of
interest,DPML the PML domain enclosingD andDnum is the
union ofD andDPML, which is the complete numerical spatial
domain in which acoustic wavefields are modelled. Scattering
occurs due to the presence of a contrast in the regionD

scat.
The outer and inner boundaries of the numerical and the PML
domain are∂Dnum and∂DPML, respectively.

Fig. 2. The unbounded acoustic scattering domainD
tot with the spatial

domainsD, DPML, Dnum, Dscat, ∂Dnum, and∂DPML.

In the remainder of this document the symbolˆ indicates
that quantities are defined in the temporal Fourier domain.

A. Scattering Theory

Consider a volumeDtot with homogeneous acoustic material
properties. In the absence of contrast, the actual pressurewave
field p̂tot(~r) is referred to as the incident pressure wave field
p̂inc(~r). However, if on top of the homogeneous background
medium inhomogeneities are present, scattering will occurand
the total field equals

p̂tot(~r) = p̂inc(~r) + p̂scat(~r), (1)

where the difference between the total and incident pressure
wave field is referred to as the scattered wave fieldp̂scat(~r).

It can be shown (e.g. [5]) that̂pscat(~r) satisfies the inho-
mogeneous Helmholtz equation

∇2p̂scat(~r) + k̂2p̂scat(~r) = −Ŝ(~r) (2)

with

Ŝ(~r) =











k̂2Xκ(~r)p̂tot(~r)

+ ~∇ ·
[

Xρ(~r)~∇p̂tot(~r)
] ∀ ~r ∈ D

scat

0 otherwise,

(3)

where ~∇ indicates the gradient operator,· indicates an inner
product, k̂ is the wavenumber in the background medium,
Xκ(~r) = κscat(~r)−κbg

κbg is the contrast in compressibilityκ, and

Xρ(~r) = ρbg
−ρscat(~r)
ρscat(~r) is the contrast in volume density of

massρ. Superscriptbg indicates the background medium,scat
the additional inhomogeneities.

A solution for Equation (2-3) is obtained by convolving
Ŝ(~r) with Ĝ(~r, ~r′), the Green’s function for the homoge-
neous background medium. This function is the solution of
the Helmholtz equation for a three-dimensional Dirac source
distribution and satisfies the radiation condition. Using Equa-
tion (1) this yields

p̂tot(~r) = p̂inc(~r) +
[

Ĝ ∗Dtot Ŝ
]

(~r), (4)

in which ∗Dtot is a spatial convolution overDtot. Due to
the appearance of̂ptot(~r) in the contrast source term̂S(~r),
Equation (4) represents an integral equation of the second kind
for known p̂inc(~r), Xκ(~r) andXρ(~r) and unknownp̂tot(~r).
In literature this is referred to as the forward problem.

Problems arise when the spatial domain is limited to the
finite numerical domainDnum, while the contrast extends
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to regions outsideDnum, as additional, unwanted reflections
originating from the boundary∂Dnum ∩ D

scat appear in the
results. These additional reflections will be suppressed by
applying PMLs as discussed in the next subsection.

B. PML Theory

The previous theory was given for real coordinates~r. From a
mathematical point of view, however, nothing restricts~r to be
real, and it turns out to be advantageous to allow for complex
coordinates, a choice which automatically leads to PMLs. A
good overview of the theory on PMLs is presented in [17].

To explain the theory behind PMLs, we start with the one-
dimensional homogeneous Helmholtz equation

∂2

∂x2
f̂(x) + k̂2f̂(x) = 0 (5)

with plane wave solutions

f̂(x) = ei(k̂x−ωt) (6)

for real x. These solutions are analytic functions.
By allowing x̃ = x+ih(x) to become complex, the so-called

analytically continued one-dimensional Helmholtz equation

∂2

∂x̃2
ĝ(x̃) + k̂2ĝ(x̃) = 0 (7)

is obtained which has as solution

ĝ(x̃) = ei(k̂x̃−ωt) = e−k̂h(x)ei(k̂x−ωt). (8)

Note that for real̂kh(x) > 0 this function is exponentially
decaying.

An important observation is that the unicity [18] of the
analytic continuation guarantees that solving forĝ(x̃) on any
domain whereh(x) = 0 yields f̂(x). This guarantees thatĝ(x̃)
is only absorbed wherêkh(x) > 0. Consequently, a convenient
choice fork̂h(x) is

k̂h(x)

{

> 0 ∀ x ∈ D
PML

= 0 ∀ x ∈ D
(9)

In this way,ĝ(x) is equal tof̂(x) for x ∈ D and exponentially
decaying forx ∈ D

PML. Thus, one can arrange for a finite
layer with absorbing properties which itself is reflectionless
as plane waves propagating fromD to D

PML are not reflected
back toD; a PML is obtained.

Analytical continuation of the Helmholtz equation fromx
to x̃ = x + i h(x) whereh(x) is a real function led to local
attenuation of propagating waves. However, for evanescent
waves with imaginary wavenumber̂k = ik̂, in which k̂

is positive real, the solution to the analytically continued
Helmholtz equation reads

ĝ(x̃) = ei(k̂x̃−ωt) = e−ik̂h(x)ei(k̂x−ωt). (10)

Thus, a PML does not attenuate evanescent waves for real
h(x).

Even though evanscent waves are exponentially decaying
without a PML, PMLs can be used to increase their decay rate
by allowingh(x) to become complex;h(x) = l(x)− i m(x).
Since x̃ = x + i h(x) = x +m(x) + i l(x), this results, for

m(x) > 0, in coordinate stretching which causes evanescent
waves to experience a spatial extent larger than it actuallyis,
and hence an increase in decay per unit distance. Hence, the
solution to the analytically continued Helmholtz equationis

ĝ(x̃) = e−ik̂l(x)e−k̂m(x)ei(k̂x−ωt), (11)

(for imaginary wavenumber̂k = ik̂) and for propagating
waves

ĝ(x̃) = e−k̂l(x)ei(k̂
′x−ωt), (12)

with real valued wavenumber̂k′ =
(

1 + m(x)
x

)

k̂. Thus, for

positivel(x) andm(x) both evanescent and propagating waves
are damped in the PML.

Unfortunately, coordinate stretching leads to an effective
wavenumber̂k′ > k̂ and thus to waves of shorter wavelength,
which are less accurately represented on the discrete grid.Due
to this loss of accuracy, coordinate stretching will cause minor
reflections off the PMLs as explained in the next subsection.

C. PML Implementation

Solving integral equations along complex contours is less
convenient than along real contours. Therefore, it is desirable
to rewrite Equation (7) back to real coordinates. Starting with
x̃ = x+ i h(x) and setting∂h(x)

∂x
= σ(x)

ω
with σ(x) 6= iω, the

spatial derivative with respect tõx can be written as

∂

∂x̃
=

1

1 + i
∂h(x)
∂x

∂

∂x
=

1

1 + i
σ(x)
ω

∂

∂x
= X̂σ(x)

∂

∂x
. (13)

Note thatσ(x) = iω is a particular case of pure coordinate
stretching that would not attenuate propagating waves. For
media that arex-invariant inDPML, the above substitution is
theonly alteration necessary to yield a Helmholtz equation on
real coordinates. Hence, from here on we assume the medium
to be invariant in the direction the PML works on. The division
by angular frequencyω appears in order to obtain frequency-
independent attenuation.

Applying the above substitution to the one-dimensional
homogeneous Helmholtz equation (7) yields, forω 6= 0,

∂2ĝ(x)

∂x2
+ k̂′′2(x)ĝ(x) = −

1

X̂σ(x)

∂X̂σ(x)

∂x

∂ĝ(x)

∂x
(14)

where the appearance of a complex wavenumberk̂′′(x) =
(

1 + i
σ(x)
ω

)

k̂ is equivalent to assuming a locally complex-
valued, lossy medium. The source term on the right-hand
side of Equation (14) appears to cancel out any reflections of
waves propagating from real to complex media. Note that the
amplitude of this source is frequency dependent and increases
for decreasing frequency.

In three dimensions, the PML has to be formulated sep-
arately for each component of the gradient operator. Thus,
contrast functionX̂σ becomes a diagonal matrix with diag-
onal elementsX̂σ

x (x), X̂
σ
y (y) and X̂σ

z (z). Consequently, the
gradient operator is replaced by




X̂σ
x (x) 0 0

0 X̂σ
y (y) 0

0 0 X̂σ
z (z)









∂
∂x
∂
∂y
∂
∂z



 = X̂σ(~r)~∇. (15)
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Fig. 3. Convergence of the iterative solver of three-dimensional simulations
with PMLs acting onp̂scat or p̂tot enclosing the numerical volume. The
simulated situation is discussed in section IV-B, the sourcetransmitted a
continuous wave at1.5 MHz. The normalizedL2-norm of the residualǫ
is a measure of how far the iterative solver is from solving thesystem. It
is obvious that the situation where onlŷpscat is attenuated requires far less
iterations than when̂ptot is attenuated. Color version can be found online.
Media-color 3

The latter shorthand notation will be used throughout the rest
of this paper for better readability.

D. PML Formulation of the scatter integral equation

Two different PML formulations for the scatter integral equa-
tion can be derived, one suppressing only the scattered field
p̂scat(~r) inside the PML and one where the total fieldp̂tot(~r)
is suppressed. The latter approach seems more natural since
the PML operates as a regular absorbing layer, whereas in the
former case only selective absorption is achieved.

However, the scatter integral equation (4) is inverted by
means of an iterative scheme as explained later on. This
implies that if the total field, and hence the incident field,
is attenuated inside the PML, the iterative scheme also has
to account for the change in incident field. If instead only
the scattered field is attenuated, the incident field remains
unchanged and therefore a faster convergence of the iterative
solver is expected. That this is indeed the case is shown
in Figure 3, from which it is clear that the difference in
convergence rate is significant. In this figure,ǫ, theL2-norm of
the residual normalized by theL2-norm of the known incident
field, is shown as a function of the number of iterations.

Furthermore, in acoustical simulations it is sufficient to only
attenuate the scattered field, as this is the only component
of the total field containing the erroneous reflections. Since
simulations with PMLs acting on onlŷpscat have a much
higher convergence rate, only this case will be studied.

A PML formulation for the inhomogeneous Helmholtz
equation (2-3) is obtained by (i) analytically continuing Equa-
tion (2-3) by using Equation (15), (ii ) rewriting the result
into an inhomogeneous Helmholtz equation, (iii ) convolving
the source term with the Green’s function and (iv) using
Equation (1). In this way we obtain a PML corrected integral

equation which reads

p̂inc(~r)−
[

Ĝ ∗Dnum Ŝinc
]

(~r) =

p̂tot(~r)−
[

Ĝ ∗Dnum Ŝtot
]

(~r), (16)

where

Ŝinc(~r) = X̂σ(~r)~∇ ·
[

X̂σ(~r)~∇p̂inc(~r)
]

−∇2p̂inc(~r) (17)

and

Ŝtot(~r) = k̂2Xκ(~r)p̂tot(~r)−∇2p̂tot(~r)

+ X̂σ(~r)~∇ ·
[

X̂σ(~r) (Xρ(~r) + 1) ~∇p̂tot(~r)
]

. (18)

Note that the incident field is corrected by an additional
source termŜinc(~r), but that the right hand side still only
contains one convolution. As the incident field is corrected
before the iterative scheme commences, this means that the
computational load per iteration is not significantly increased
as compared to the non-PML version.

The contrasts in compressibility and density are required to
be spatially invariant insideDPML in the direction the PML
acts on. Spatial invariance in thex-direction is obtained by
setting Xκ(x ∈ D

PML, y, z) to Xκ(x ∈ ∂DPML, y, z) and
Xρ(x ∈ D

PML, y, z) to Xρ(x ∈ ∂DPML, y, z). Invariance in
the y- andz-directions are obtained in an identical way.

III. I MPLEMENTATION

For known incident field and contrasts, integral Equation (16-
18) is solved onDnum for unknown p̂tot(~r) by inverting the
integral equation. As analytic inversion is not possible, the
problem will be solved numerically on a discretized grid.

After discretization, the resulting integral Equation (16-18)
can be represented as a matrix-vector equation of the form

Aptot = pinc (19)

where pinc is the vector containing the known values of
p̂inc(~r)−

[

Ĝ ∗Dnum Ŝinc
]

(~r) on the points in the discrete grid,

ptot is the vector containing the unknown values ofp̂tot(~r) on
the grid andA is the known matrix governing the integral
equation including the PMLs.

Direct inversion of this matrix is not possible due to
memory and computation time restrictions. Therefore, the
integral equation will be solved iteratively using a Bi-CGSTAB
scheme [19] because of its fast convergence and simplicity.

Discretization of Equation (16-18) is not trivial. Firstly,
to overcome problems associated with the singularity of the
Greens function we use its weak form [20]. Secondly, spatial
derivatives have to be taken of discontinuous functions, and
therefore cannot be taken in the spatial Laplace domain. To
improve on accuracy, rather than the common symmetric three-
point stencil, a symmetric 17-point stencil is used. Thirdly, the
spatial convolution is a computationally expensive operator. To
reduce the computational load, the convolution is computedin
the spatial Fourier domain using FFTs, at the expense of an
increase in memory load.

Unfortunately, PMLs are only guaranteed to be reflection-
less in the analytical case. Thus, the source term in equation
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(14) can only completely cancel out the reflections caused by
a space-variant̂k′′(x) if it is analytically convolved with the
Green’s function. However, on a discrete grid the convolution
and the Green’s function are only approximations, hence minor
reflections off the PML for discontinuousσ(x) are expected.

IV. EXPERIMENTS

In order to investigate the performance of the PML we will
first test the accuracy of the method, followed by tests on the
effectiveness of PMLs, both in terms of achieved attenuation
and reflectionlessness, and by experiments on the convergence
of the iterative scheme. Finally the effects of allowing fora
complex or smooth PML contrast functionσ(~r) are studied.

A. Validation of the Integral Equation Method

The simplest scattering problem for which an analytical so-
lution exists [21] is the one-dimensional case of a plane
wave reflecting off a single interface between the background
medium and the contrast at normal incidence.

To validate the integral equation method, both with and
without PML, a three-dimensional volume of1024 µm ×

1024 µm × 1024 µm of blood (ρbg = 1050 kg m−3,
κbg = 3.91 · 10−10 Pa−1) is simulated using elements of
size 8 µm × 8 µm × 8 µm. Half of the volume, starting at
x0 = 512 µm, is modelled to mimic fat (ρscat = 960 kg m−3,
κscat = 4.82 · 10−10 Pa−1). The transient plane wave has an
amplitudeAi = 0.25 MPa, a center frequency of20 MHz, a
bandwidth of83%, and has zero phase atx = 0 m. The point
of observation is~robs = (375 µm, 512 µm, 512 µm).

The resulting total fieldsptot(~robs) for the analytic case,
and from simulations with and without PML are shown in
Figure 4. Both the PML and non-PML simulations accurately
reproduce the amplitudes and travel times of the incident
pulse and the reflection off the contrast interface. The non-
PML result contains additional reflections off the domain
boundaries, which are effectively suppressed in the result
obtained by simulations including PMLs.

The integral equation method, both in- and excluding PMLs,
is also tested against the three-dimensional analytic solution
for a plane wave scattering off a soft homogeneous spherical
contrast [22]. As in the situation above, a volume of1024 µm×

1024 µm × 1024 µm of blood is simulated. In this case, a
sphere of radius256 µm mimicking fat is located centrally in
the cube, and the volume is divided in elements of4 µm ×

4 µm× 4 µm.
In Figure 5, the analytic solution is shown together with

the solution obtained by solving the scatter integral equation
for the complete sphere. The incident field propagates, in
this figure, from left to right with increasing time. The two
solutions show excellent agreement.

In addition, in this figure the case of a truncated sphere is
shown, first for the case where the contrast is simply cut off,
i.e. without applying a PML. Although the early time slice at
t = 0.74 µs agrees with the full and analytic solutions, it is
clear from the slice att = 1.04 µs that truncating the contrast
introduces a reflection off the domain boundary.

0 0.5 1 1.5 2
−0.1

0 

0.1

 

 

Time (µs)

P
re

ss
ur

e 
(M

P
a)

Analytic vs numerical results with or without PML

Analytic
Without PML
With PML

Incident field

Reflection
domain boundary

Reflection
interface

Fig. 4. Comparison of the analytical solution to the scatter problem for plane
waves reflecting under normal incidence with simulations withand without
PMLs. To improve clarity,the pressure axis is clipped. Both simulations
reproduce accurate amplitudes and travel times of both the incident field
and the reflection off the interface, but the non-PML result shows additional
reflections off the domain boundaries which are effectively suppressed in the
PML result. Color version can be found online.Media-color 4

In the bottom row of Figure 5, time slices of the truncated
situation, including a PML of a thickness of approximately3.3
wavelengths, are shown. From these images it is clear that the
PML suppresses the reflection off the domain boundary while
introducing only a very weak reflection off the PML itself.
Furthermore, the scattering occuring off the modelled contrast
is in agreement with the analytical solution of the full problem.
As the distal half of the sphere is absent, naturally this half
does not contribute to the total pressure field.

B. PML Effectiveness

To test the effectiveness of the PML formulation in Equa-
tion (16-18), we consider the situation sketched in Figure 6. It
consists of a cubic contrast of160 µm in all three directions
centered in a volume of dimensions512 µm × 512 µm ×

512 µm. Again blood is chosen as homogeneous background
medium, while the contrast is modelled to mimic fat.

Outside the modelled cube a transducer with radiating
surface of area400 µm × 27 µm is placed to generate an
incident pressure field at a frequency of10 MHz. The spatial
domain is divided into643 cubic elements of8 µm × 8
µm× 8 µm each. The same discretization is used throughout
the remaining part of this section.

Note that in this situation there would be no need for PMLs
as no contrast is present at any of the domain boundaries. How-
ever, this situation allows for easy determination of incident,
scattered and total fields and thus easy quantification of the
attenuation achieved in the scattered field by applying PMLs.

For simplicity, in this situation the PML contrast function
σ(~r) is chosen to be a step function, i.e.

σ(~r) =

{

constant ∀ ~r ∈ D
PML

0 ∀ ~r ∈ D.
(20)

The PML thicknessd is equal for all three dimensions as
indicated in Figure 6. More elaborate PML contrast functions
will be studied lateron.



6

Fig. 5. Timeslices of the analytic solution (top row) of a plane wave scattering
off a soft homogeneous sphere, together with the solution obtained by solving
the scatter integral equation described in this work (second row). Observe that
the two results show excellent agreement, both in amplitude and phase. In the
bottom two rows, the cubic volume is cut in half, thereby truncating the
spherical contrast. If no PML is applied, a strong reflectionoff the domain
boundary is observed (third row from the top), demonstratingthe need for
careful treatment of contrast truncation. Observe that the scattering present in
the first timeslice agrees with the analytic solution for the full sphere. If a PML
is applied (bottom row), the unphysical reflection off the domain boundary
is removed and only a very weak reflection off the PML is introduced. All
twelve images use the same colorbar which has been clipped by a factor of
ten to increase visibility of the scattered fields. High brightness means high
pressure. The dotted circles indicate the location of the sphere, and the dashed
lines indicate where, in the bottom two rows, domainD has been truncated.
All images shown are at a height of512 µm, and the incident plane wave
propagates from left to right with increasing time.Media-color 5
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Fig. 6. Sketch of the situation used to evaluate the PML effectiveness.
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Ideally, a PML attenuates strongly enough so that pressure
fields scattered off the contrast block are fully attenuated
before reaching∂Dnum. In order to quantify the attenuation
of the PML, the normalized sumR

(

d
λ
, σ

)

of the remaining
scatter pressure field on∂Dnum is computed as a function of
d
λ

andσ, i.e.

R

(

d

λ
, σ

)

=

∑

∂Dnum

∣

∣pscat
∣

∣

2

∑

∂Dnum

∣

∣pinc
∣

∣

2 . (21)

The results are shown in Figure 7. It can be seen that
increasingd or σ results in a smooth decrease of the scattered
field. Also note the sharp change inR starting directly at
d
λ

= 0, indicating that even thin layers of much less than
a wavelength thick result in strong attenuation. The remaining
scatter fieldp̂scat is decreased by a factor of more than200
for large d

λ
andσ.

Next, it is tested whether the PMLs are indeed reflectionless.
To this aim, we have used the situation sketched in Figure 8.
It consists of the same cubic domain as in the previous
experiment, though in this case no contrast is present and the
source is placed at the center of the cube. Ideally, both withand
without PMLs, the total field should equal the incident field
as no contrast is present. So to quantify the reflectionlessness
of the PML, the same sum of Equation (21) is used. However,
in this case the summations run overD

num instead of just
∂Dnum, hence

R

(

d

λ
, σ

)

=

∑

Dnum

∣

∣pscat
∣

∣

2

∑

Dnum

∣

∣pinc
∣

∣

2 . (22)

Intuitively, it seems more logical to sum overD only, as it
is of no relevance what the scattered pressure field inside the
PML is. However, the size ofD varies withd, so quantitative
comparison between different situations is less straightforward
due to normalization. Fortunately, experiments (not treated
here) show that the amplitude of̂pscat is roughly constant
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Fig. 8. Sketch of the situation used to evaluate PML reflectionlessness.
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Fig. 9. Normalized sum of the PML-generated scatter fieldp̂scat overDnum

as a function ofd
λ

andσ. Simulations are performed in the domain depicted
in Figure 8 at a frequency of20 MHz. Color version can be found online.
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throughoutDnum, which means that the summations can be
performed overDnum without problems.

The sumR
(

d
λ
, σ

)

is shown in Figure 9 for simulations
performed at a frequency of20 MHz. In general,R increases
with increasingd

λ
or σ whereas for a reflectionless PMLR

should equal0, indicating that more and more of the incident
pressure field is scattered by the PML. However, the amplitude
of the scattered pressure field generated by the PMLs is more
than100 times smaller than that of a field scattered off typical
contrasts. Thus, the PMLs are virtually reflectionless.

C. Convergence Iterative Scheme

As can be observed from Equation (16-18), introducing PMLs
results in adding contrasts to the problem under investigation.
It is therefore expected that the convergence of the Bi-
CGSTAB scheme is decreased by incorporating the PMLs.
To test the influence of the applied PML on the convergence
of the iterative inversion scheme, the situation as depicted in
Figure 6 is modelled.

In Figure 10 the number of iterations required to reach a
maximum retaining error levelǫmax = 1 · 10−8 is plotted as a
function of d

λ
andσ. This error level is defined as

ǫ =

∑

Dnum

∣

∣pinc − Aptot
∣

∣

2

∑

Dnum

∣

∣pinc
∣

∣

2 (23)

In this case the problem was solved for a frequency of
20 MHz. It is clear from this figure that indeed the con-
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−8. Color version can be found online.
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vergence rate decreases as more iterations are required for
stronger or thicker PMLs. For this frequency, the number of
iterations increases from3 in the absence of PMLs to21 for
the strongest PML used in this experiment.

In Figure 11 the same experiment is repeated for a frequency
of 10 MHz. Here we observe that for decreasing frequency the
deterioration of the convergence rate due to PMLs increases.
This effect was already predicted in subsection II-C.

An important observation to be made is that, especially for
lower frequencies, the PML contrast amplitudeσ has a much
greater impact on the convergence rate than the thicknessd.
This suggests that, in relation to convergence, thick PMLs
are preferred over strong PMLs. This fits with the theory; in
the case of an infinitely extended PML with zero strength no
additional contrast is introduced (σ = 0) and yet no additional
reflections will occur as no domain boundary is present.

D. Smooth PML Contrast Function

In subsection II-C it was shown that changingσ(~r) from the
step function in Equation (20) to a smoother function would
reduce the reflections off∂DPML. Even though in the above
experiments these reflections were found to be negligibly
small, i.e. more than100 times smaller than fields scattered
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function, at the cost of a significant increase in computationtime. Color
version can be found online.Media-color 12

off typical contrasts, in this section we will attempt to further
diminish them.

In order to diminish these reflections a smooth transition of
the PML contrast function betweenD and D

PML should be
achieved. Therefore, in the one-dimensional case we multiply,
in the transition region,σ(x) of Equation (20) with a smoothly
function φ(x′):

φ(x′) =
1

2
−

1

2
cos

(

πx′

w

)

, 0 ≤ x′ ≤ w (24)

wherew is the width of the transition region.
To determine the effect of smoothingσ on the reflection-

lessness of the PML, the situation depicted in Figure 8 is used.
At 10 MHz, a PML of fixed thicknessd

λ
= 1.56 and PML

contrast amplitudeσ = 50 MHz is multiplied with smoothing
functionφ(x′) for varyingw, and weighted to achieve similar
attenuation for allw. The normalized sum of Equation (21)
is computed overDnum and shown, as a function ofw, in
Figure 12. In the same figure, also the number of iterations
required to reach a set error level is plotted.

This figure shows that smoothingσ only marginally de-
creasesR while the number of iterations required to solve
the problem increases. The increase in number of iterations
can be explained by the fact thatσ is increased so that the
smooth PML contrast function achieves the same attenuation
as the step function PML contrast function, and thus that more
contrast is present.

E. Complex PML Contrast Function

Evanescent and attenuative waves were shown in subsec-
tion II-B to be unaffected by PMLs ifσ(~r) is real valued.
Even though such waves are attenuated without the need for
PMLs, in this experiment we try to increase their attenuation
by applying PMLs with complexσ′(~r) = (1− iα)σ(~r). For
σ(~r) a step function is used.

The modelled situation is that of Figure 6, and simulations
are performed at a frequency of10 MHz. The real part of the
PML contrast amplitude is fixed atσ = 50 MHz, a value
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Fig. 13. Normalized sum of scatter pressure fieldp̂scat at ∂Dnum as a
function of d

λ
andα after applying a PML with complex contrast function

(σ = 50 MHz) for attenuative waves. Simulations are performed in the
domain depicted in Figure 6 at a frequency of10 MHz. The figure shows
that strong attenuation is achieved for a real valued contrast function. Color
version can be found online.Media-color 13

found in previous experiments to yield strong damping of
propagating waves, andα and d

λ
are varied. The source is

a transducer with a radiating surface of8× 8 µm2.
The attenuative waves are generated by using complex

medium parameters for the background medium, mathemat-
ically represented by taking the wavenumberk̂ in the Green’s
function complex and equal tôk(1 + iβ). In this experiment,
β = 0.1 which amounts to much stronger attenuation than
typically found in biomedical tissue. This ensures that any
effects found here will be much less pronounced in practical
biomedical applications.

The normalized sum of Equation (21) is computed over
∂Dnum and shown, as a function ofα and d

λ
, in Figure 13. It

is clear from this figure that strong damping is achieved for
a purely realσ′(~r) = σ(~r) as the remaining scatter pressure
field at ∂Dnum is low(est) in that case.

In experiments not treated here it was found that conver-
gence for allα 6= 0 was much slower than forα = 0.
This is explained by the fact that allowingσ(x) to become
complex introduces more contrast, see Equation (14), similar
to increasing the magnitude ofσ.

In subsection II-B it was predicted that allowing for a
complexσ(~r) might lead to more energy being reflected off
∂DPML. In the final experiment we use the configuration
depicted in Figure 8 to compute, in the case of attenuative
waves, the ratioR of Equation (22) by summing the scattered
field overDnum for variousα and d

λ
, again at a frequency of

10 MHz. The results are shown in Figure 14.
It is obvious from this figure that indeed for allα 6= 0 the

energy reflected off the PML is larger than forα = 0. Thus,
considering damping, reflectionlessness and convergence rate,
the best results are obtained by using a purely realσ(~r).

V. CONCLUSION

In this paper, Perfectly Matched Layers (PMLs) have been ap-
plied to frequency domain acoustic scattering integral equation
problems. It is demonstrated that strong attenuation (a factor
of 200 in amplitude) of scatter pressure fields is achieved in
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layers with a thickness of less than a wavelength, and that the
PMLs themselves are virtually reflectionless. Thus, additional
reflections introduced by truncating the computational domain
in the presence of contrast at the domain boundary can
effectively be suppressed by PMLs.

In this work it is also shown that the frequency domain inte-
gral equation method, both with and without PMLs, accurately
reproduces pressure fields by comparing results to analytical
solutions. We have shown and explained that applying PMLs
deteriorates the convergence of the applied inversion scheme,
and that this deterioration is strongly frequency dependent.

Furthermore, we have shown that using a smooth varying
PML contrast function yields similar amplitudes for reflections
off the PML as compared to a step function, and that conver-
gence of the iterative scheme is faster using a step function.
The slight reduction of the reflection generated by the PML
does not justify the cost of a lower convergence rate, hence we
conclude that using a step function for the PML is sufficient.

Finally we found that allowing a complex valued PML
contrast function did not further reduce attenuative waves,
whereas convergence is slower and more energy reflects off
the PML itself. This implies that a purely real valued PML
contrast function should be used.
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