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Iterative Reconstruction
of the Transducer Surface Velocity

Erwin J. Alles and Koen W.A. van Dongen

Abstract—Ultrasound arrays used for medical imaging consist
of many elements placed closely together. Ideally, each element
vibrates independently. However, due to mechanical coupling,
cross-talk between neighboring elements may occur. To quantify
the amount of cross-talk, the transducer velocity distribution
should be measured.

In this work, a method is presented to reconstruct the velocity
distribution from far-field pressure field measurements acquired
over an arbitrary surface. The distribution is retrieved fr om the
measurements by solving an integral equation, derived fromthe
Rayleigh integral of the first kind, using a conjugate gradient
inversion scheme. This approach has the advantages that it
allows for arbitrary transducer and pressure field measurement
geometries, as well as the application of regularisation techniques.

Numerical experiments show that measuring the pressure field
along a hemisphere enclosing the transducer yields significantly
more accurate reconstructions than measuring along a parallel
plane. In addition, it is shown that an increase in accuracy is
achieved when the assumption is made that all points on the
transducer surface vibrate in phase.

Finally, the method has been tested on an actual transducer
with an active element of700 µm × 200 µm which operates at a
center frequency of 12.2 MHz. For this transducer, the velocity
distribution has been reconstructed accurately to within50 µm
precision from pressure measurements at a distance of1.98 mm
(= 16λ0) using a 200 µm diameter needle hydrophone.

I. I NTRODUCTION

Diagnostic medical ultrasound utilises transducer arrayswith
large numbers of small elements. These elements may have
dimensions down to hundreds of micrometers, and operate at
frequencies in the MHz range. Since these small elements are
placed closely together, they suffer from mechanical cross-
talk, which may deteriorate the image quality. Quantifying
the amount of cross-talk requires accurate knowledge of the
normal component of the velocity distribution of the transducer
surface [1], [2], which is from here on referred to as the
“velocity distribution”.

Direct measurement of the velocity distribution is compli-
cated: accelerometers and other contact methods disturb the
distribution due to inertia [3], and laser Doppler vibrometry [4]
requires specialised and expensive hardware to measure vibra-
tions with frequencies of20 MHz and above, and at a spatial
resolution of20 µm or less. To avoid these complications,
and to enable measurements under realistic conditions (e.g.
on transducers submerged in water), an indirect method is
preferred where the radiated pressure, measured some distance
away from the transducer, is used.
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With the indirect approach, pressure field measurements
are back-propagated to the transducer surface to reconstruct
the velocity distribution. When measurements are taken in a
planar domain parallel to the planar transducer surface, back-
propagation can be performed analytically using Weyl’s rep-
resentation of the Green’s function [5], [6], [7], [8], [9].Alter-
natively, time-reversal techniques can be applied, eitherin the
spatial domain [10], [11] or in the wave number domain [12],
[13], [14] to reconstruct the velocity distribution. Thesetime-
reversal techniques are called (near-field) acoustic holography
and are, similar to their counterparts in electromagnetism[15],
typically limited to certain simple geometric shapes for both
the transducer surface and pressure measurement domain [16].

To extend the validity of acoustic holography to arbitrary
geometries for both the pressure measurement domain and the
transducer surface, boundary element method-based acoustic
holography has been developed, where the sound radiating
surface is divided into a number of surfaces of which the
contribution to the resulting pressure field is computed using
the Kirchhoff integral. By inverting the matrix governing the
pressure contribution from each surface element, the trans-
ducer velocity can be obtained. This matrix inversion can be
performed directly [17] or iteratively [18], [19]. The above
methods have all successfully been applied to larger scale sit-
uations ranging from complete airplanes [20] to refridgerator
compressor engines [21].

Application to ultrasound transducers has been limited to
planar transducer surfaces where the pressure is measured
along a plane parallel to the transducer surface [12], [14],
[10], [11]. However, in (medical) imaging arrays, the elements
are typically of dimensions comparable to the wavelength, and
consequently have wide radiation patterns. Therefore, to obtain
accurate reconstructions, the planar measurement domain need
to be inhibitively large to capture energy propagating under
large angles. However, sensitivity limitations of the measure-
ment setup limit the maximum dimensions of the measurement
plane, and hence the accuracy of the reconstruction.

In this work, a frequency-domain velocity distribution re-
construction method is presented in which the reconstruction
problem is viewed as an inverse problem, similar to the
boundary element method-based approach. Here, the com-
putationally less expensive Rayleigh integral rather thanthe
Kirchhoff integral is used to express the known measured
pressure field as the result of a convolution of an unknown
velocity distribution with a known Green’s function. By formu-
lating the back-propagation as an inversion problem, a greater
flexibility is achieved, as it allows for arbitrary geometries for
both the transducer surface and the pressure field measurement
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Fig. 1. Sketch of the geometry used. An arbitrarily shaped transducer (gray)
is located in the planar domainSv and generates a pressure field which is
measured in the arbitrarily shaped domainSp. R is the distance between a
point rv on the transducer surface and the pressure measurement point rp.

domain. In this work, the effect of the geometry of the pressure
measurement domain on the reconstruction result is studied.

In addition, iterative inversion methods allow for the ap-
plication of regularisation techniques to further improvethe
velocity distribution reconstructions. In fact, in most cases
regularisation is required [18], [19] to suppress the effect of
noise in the measurement on the reconstruction. In this work,
regularisation is applied by splitting the velocity distribution
into its temporal and spatial parts, where a constant phase over
the transducer surface is assumed. In [22] this decomposition
is performed to prove uniqueness of the obtained inversion
result rather than to improve the result.

In the remainder of this work, first the theory will be
treated, followed by synthetic and actual experiments on small
transducer elements of700 µm by 200 µm operating at a
center frequency of12.2 MHz. Both the unregularised inverse
problem and the inverse problem assuming constant phase are
solved using both a planar and a hemispherical pressure field
measurement geometry. In this work, only a single element
placed in a planar surface is considered, but the method can
equally well be applied to phased and/or steered arrays on
arbitrary (curved) domains.

II. T HEORY

Consider the geometry shown in figure 1. Here, an arbitrary
velocity distribution, located in the planar domainSv, gen-
erates a pressure fieldp(rp, ω), which is measured in the
arbitrarily shaped domainSp. The pressure fieldp(rp, ω) can
be computed in the frequency domain using the Rayleigh
integral of the first kind [23],

p(rp, ω) = 2iωρ0

∫

rv∈Sv

vn(rv, ω)
e−ik0R

4πR
dA(rv), (1)

whereω is the angular frequency,ρ0 is the volume density
of mass of the medium surrounding the transducer,k0 is the
wave number in the surrounding medium,vn(rv, ω) is the
component of the fluid particle velocity normal to the surface
Sv, andR is the distance between a source pointrv ∈ Sv

and a measurement pointrp ∈ Sp. For locally instantaneously
reacting fluid, the normal component of the particle velocity
of the medium at the transducer surface is equal to that of
the transducer surface velocity. As both velocities equal each
other, both will from here on be referred to as the velocity
distributionvn(rv, ω).

Equation (1) reads, in operator notation,

p(rp, ω) = R(rv , rp, ω) [vn(rv, ω)] , (2)

where R(rv, rp, ω) is the Rayleigh operator. This operator
contains the convolution and all scalar multiplications required
to obtain pressurep(rp, ω) from the velocity distribution. For
known pressure fieldp(rp, ω) and unknown velocity distri-
bution vn(rv, ω), equation (2) represents an integral equation
of the first kind. This equation represents an inverse problem
that is solved using a conjugate gradient (CG) scheme [24],
see algorithm 1. As operatorR(rv, rp, ω) is not symmetric,
CG is applied to the normal equation, which minimises the
normalised error functionalE(j)(ω) for each frequency. At
the j-th iteration this functional equals

E(j)(ω) =

∑

rv∈Sp

∣

∣

∣
R∗ p(rp, ω)−R∗R

[

v
(j)
n (rv , ω)

]∣

∣

∣

2

∑

rv∈Sp

|R∗ p(rp, ω)|
2 (3)

where the summations run over all discrete values ofrv ∈ Sp,
andR∗ is the adjoint of Rayleigh operatorR.

Algorithm 1 The CG scheme on the normal equation

v0
n = 0

d0 = r0 = R∗p−R∗Rv0
n

j = 0
while j ≤ jmax and rj ·rj

p·p
≥ ǫ2 do

αj = rj ·rj

Rdj ·Rdj

vj+1
n = vj

n + αjdj

rj+1 = rj − αjR∗Rdj

dj+1 = rj+1 + rj+1
·rj+1

rj ·rj
dj

j = j + 1
end while

Applying a CG scheme does not impose any restrictions
on the geometries of the spatial domainsSv and Sp, and in
addition allows for the application of regularisation techniques.
In contrast, using Weyl’s representation of the Green’s function
requires parallel planer geometries for both the pressure mea-
surement and velocity distribution domains [8]. In this work,
full advantage is made of both the flexibility in the geometries
of the spatial domains and the ability to apply regularisation
techniques.

A. Pressure Measurement Geometry

Most analytical methods use measurements taken in a planar
domainSp parallel to the surface of the transducer, thereby
omitting the acoustic energy radiated under large angles with
respect to the normal of the transducer. In general, this
approach results in strong spatial smoothening which limits
the reconstruction accuracy. This smoothening is the result
of the fact that the applied elements are typically smaller
than one wavelength, resulting in omni-directional radiation
patterns. Consequently, a significant amount of the radiated
field propagates outside the finite-sized, planar measurement
surface, and is hence not available for reconstruction.
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Fortunately, the presented iterative solution method putsno
restrictions on the spatial domainSp for the measurements.
Taking advantage of this, measurements made over the surface
of a hemisphere are employed to improve the reconstruction.
Compared to a planar domain, a hemisphere has the advantage
that it encloses the entire half-space insonified by the source
and thereby captures more acoustic energy. In addition, it
measures all the acoustic waves at an almost identical distance
from the center of the source, thereby retaining the pressure
amplitude. Consequently, the resulting velocity distribution
reconstruction is expected to be significantly more accurate
than in the case of a planar pressure measurement domain.

B. Regularisation

The convergence of the iterative scheme and the accuracy of
the reconstructed velocity distribution may be improved by
the application of regularisation techniques [25]. In medical
acoustical imaging, total variation [26], [27], [28] is a well
known regularisation technique used to suppress noise in the
reconstruction. However, a drawback of this approach is that it
typically leads to smoothening, whereas the results presented
later on show that for the velocity distribution reconstruction
the opposite is needed.

Alternatively, prior knowledge on the signature of the source
signal may be used for regularisation. In the absence of cross-
talk, only the excited area of the transducer plane will vibrate.
Therefore, if only a single transducer element is present, or if
all elements in an array are excited with the same excitation
signal, all points on the transducer surface will either oscillate
in phase with the same source signature, or not oscillate at all.
Consequently, the velocity distribution can be separated in a
spatial and a frequency component, i.e.,

vn(rv, ω) = S(ω)v0(rv), (4)

whereS(ω) is the source signal andv0(rv) is the spatially
varying velocity distribution amplitude. Combining equa-
tion (2) and (4) results in an integral equation of the form

p(rp, ω) = R′(rv , rp, ω) [v0(rv)] , (5)

where the operatorR′(rv, rp, ω) includes the source signature,
i.e.,

R′(rv, rp, ω) = R(rv, rp, ω)S(ω). (6)

To reconstruct the spatially varying amplitudev0(rv), the
applied CG scheme will minimise the normalized error func-
tional E′(j)(ω), which equals

E′(j)(ω) =

∑

rv∈Sp

∣

∣

∣
R′∗ p(rp, ω)−R′∗R′

[

v
(j)
0 (rv, ω)

]∣

∣

∣

2

∑

rv∈Sp

|R′∗ p(rp, ω)|
2 . (7)

This regularisation technique is able to reconstruct edges
in the original velocity distribution more sharply and hence
should reduce spatial smoothening even further. This technique
will from here on be referred to as regularisation under
constant phase. Note thatv0(rv) is frequency independent, and
that the source signalS(ω) needs to be estimated from, e.g.,
the applied electrical excitation or the result of unregularised
CG inversion.

III. E XPERIMENTS

All simulations and reconstructions in this work have been
performed in the temporal frequency domain across the en-
tire spectrum. To evaluate the performance of the proposed
techniques, the frequency-domain velocity distributionsare
transformed to the time domain using Fast Fourier transforms.

The described velocity reconstruction technique is testedon
synthetic and real pressure field measurements. In all exper-
iments the pressure field is generated by a single transducer
element of dimensions700 µm × 200 µm. The elements are
excited by a Gaussian modulated pulseS(t) given by, in the
time domain,

S(t) = A0 cos(2πf0t)e
−

(t−µ)2

2σ2 , (8)

with time coordinatet, temporal widthσ = 100 ns, temporal
offset µ = 200 ns, center frequencyf0 = 12.2 MHz, and
velocity amplitudeA0 = 1 m/s or voltage amplitudeA0 =
5 V for the synthetic and real measurements, respectively. The
transducer is placed centrally in a square domain of2.05 mm
× 2.05 mm, divided into41 × 41 points each spaced50 µm
apart. The background medium is in all cases water (c0 =
1500 m/s, ρ0 = 1000 kg/m3).

Measurements are taken in both a plane parallel to the plane
Sv at a distancez = 1.98 mm (= 16λ0) and on the surface
of a hemisphere of radiusa = 1.98 mm. The planar domain
has dimensions of2.05 mm × 2.05 mm, divided into41× 41
points each spaced50 µm apart, resulting in1681 A-scans.
Approximately the same number of A-scans (1654) have been
used for the hemispherical domain, and are distributed such
that each grid point corresponds to an equal area. Each A-scan
contains301 time samples, sampled at a temporal sampling
frequency of200 MHz. The wavelength corresponding to the
center frequency of the applied source signal isλ0 = 123 µm,
and thus both geometries are in the far-field (z = a = 16λ0).
The A-scans are computed by first evaluating the frequency
domain Rayleigh integral given in equation (1) followed by
a Fourier transformation to obtain the resulting time-domain
A-scans. The applied CG scheme is stopped when the error
functional reaches a level ofE(j) ≤ 10−2. Experiments
not treated here showed that a lowerE(j) deteriorates the
reconstruction result due to overfitting of noise.

A. Synthetic measurements

For the synthetic experiments, a single active transducer is
used. The synthetic experiments are performed to quantify the
accuracy of the methods. To this aim, the frequency-domain
velocity distribution reconstructionv(j)n (rv, ω) is transformed
to the time domain yieldingvn(rv, t). The resulting time-
domain reconstructions are subsequently used to evaluate the
normalised construction errorǫ computed by

ǫ =

∑

rv∈Sv

∑

t

[

vn(rv , t)− vorig
n (rv, t)

]2

∑

rv∈Sv

∑

t

[

vorig
n (rv, t)

]2 , (9)

where the summations run over all discrete spatiotemporal
samples, and withvorig

n (rv, t) the original velocity distribution.
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Synthetic measurements in a parallel plane

First, reconstructions using noise-free measurements taken in
a planar domain parallel to transducer surface are considered.
In figure 2, the same snapshot of the original time-domain
velocity distribution and of reconstructions obtained with the
unregularised and regularised CG inversion are shown. Note
that a vibrating area of approximately the correct dimensions is
obtained with both methods, and that the recovered amplitudes
are correct. The shown snapshot coincides with the maxi-
mum amplitude of the driving Gaussian modulated pulse of
equation (8), but the differences between the original and the
two reconstructed velocity distributions are of similar relative
magnitude in all snapshots.

Both methods suffer from spatial smoothening of similar
magnitude, and judging from figure 2, assuming a spatially
invariant phase does not seem to improve the reconstruction.
In fact, when computing the normalised reconstruction error ǫ
of equation (9), the error increases fromǫ = 36.0 % for the
full CG inversion toǫ = 49.9 % for the regularised approach.

By studying the transient behaviour of the velocity distribu-
tions, it was observed that the spatial spreading of vibrational
energy is reduced by applying constant phase regularisation.
This is demonstrated in figure 3, where instead of a single
snapshot, the quantityK(rv) is given,

K(rv) =
∑

t

[v′n(rv, t)]
2
, (10)

which is proportional to the kinetic energy in each pointrv.
From this figure it is clear that, despite the larger error in the
reconstruction, assuming a constant phase reduces the spatial
spreading of the energy and yields a vibrating region that is
more sharply defined.

Next, the effect of noise on the reconstruction is demon-
strated. To this aim,5 % white noise, relative to the overall
maximum amplitude in the computed pressure fields, is added
to the same synthetically measured fieldp(rp, t) as used above.
The resulting reconstruction of the kinetic energy distribution
K(rv) is shown in figure 4. While the unregularised CG
inversion result is dominated by the noise present in the
data, the inversion result assuming a constant phase across
the interface is unaffected. These results clearly demonstrate
that regularisation based on a constant phase assumption
significantly reduces the sensitivity to noise.

Synthetic measurements on a hemisphere

Even though good results are obtained by measuring on a
plane parallel to the transducer surface, the reconstructions
still differ significantly from the true velocity distribution.
Due to practical limitations in measurement duration and
sensitivity, the planar domain necessarily has a finite aperture.
However, the transducer elements typically found in medical
ultrasound transducers are small compared to the wavelength,
resulting in a large aperture window for the radiated acoustic
energy. If pressure measurements are taken along a planar
domain, an inhibitively large spatial domain is required to
capture all acoustic energy. This is demonstrated in figure 5,
where the spatial distribution of the normalised acoustic power

transmitted by a single element transducer is shown. In the far-
field, the normalised power is approximately equal to

P (rp) =

∑

t

[p(rp, t)]
2

maxrp

{

∑

t

[p(rp, t)]
2

} . (11)

The aperture of the parallel square used in the experiments
is the gray curve projected onto the sphere, and83.6 % of
the total power is captured in this planar domain. Thus, a
significant amount of power is present at large opening angles
φ between a point of observation and the z-axis.

In addition, if measurements are performed in a planar
domain, the distance between the transducer element and the
pressure measurement point increases for increasing angle, and
hence the pressure amplitude will decrease strongly in points
corresponding to large aperture angles making the method
more sensitive to noise in the data. Consequently, part of
the acoustic energy is either absent or hidden in the noise in
the pressure field measurement, and the reconstructed velocity
distributions will be spatially smoothened [8].

When the pressure field is measured over a hemisphere
with radiusa = 1.98 mm instead, the reconstructions improve
significantly. In the absence of noise, the reconstruction errors
reduce toǫ = 18.7 % for unregularised CG inversion and
ǫ = 4.2 % for CG inversion under the assupmtion of a
constant phase. When5 % white noise is added to the pressure
measurements, the reconstruction results shown in figure 6 are
obtained. In this figure, the kinetic energy distributionK(rv) is
shown for the original and for the two reconstructed velocity
distributions. Observe that almost no spatial smootheningis
present in both reconstructions, and that the reconstructed
transducer element oscillates with an almost spatially invariant
amplitude.

In addition, observe that the reconstruction obtained using
unregularised inversion is, contrary to the case of a planar
pressure measurement domain shown in figure 4, virtually
free from noise. This strong reduction in noise sensitivityis
due to the greatly reduced measurement distance, and hence
improved signal srength, under large angles in the case of a
hemispherical pressure measurement domain.

For the above reconstruction, the hemisphere is divided into
1654 elements of equal area. To mimic the actual measurement
performed later on, the hemisphere only extends down to an
opening angleφ = 75°. Note that the opening angle of the
planar aperture is approximately equal toφ ≈ 37°.

Next, the significance of the opening angle, and hence
of the acoustic energy radiated under large aperture angles,
is demonstrated in the absence of noise. In figure 7 the
normalised reconstruction errorǫ for both unregularised CG
inversion and CG inversion when assuming a constant phase
is plotted against the aperture angleφ. On the top axis,
the fraction of the energy captured by a spherical section,
Pcaptured(φ)/Ptotal, is plotted against the aperture angle. From
this plot it is clear that the reconstruction error decreases
for increasing aperture angle, even at large aperture angles.
This shows that the power radiated at large angles plays a
significant role in the velocity profile reconstruction. Finally
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Fig. 2. A snapshot of the original time-domain velocity distribution (left), together with the time-domain results obtained from the reconstructed frequency-
domain velocity distributions using unregularised CG inversion (middle) and CG inversion assuming a constant phase (right). Pressure measurements were
taken in a planar domain parallel to the transducer surface.Observe that the spatial smoothening is of the same magnitude in both reconstructions. The
reconstruction errors for the unregularised inversion problem and the inversion assuming a constant phase areǫ = 36.0 % and ǫ = 49.9 %, respectively.
Color version can be found online.Media-color 2
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Fig. 3. The kinetic energy inSv for the original velocity distribution (left), the reconstructed velocity distribution using unregularised CG inversion (middle) and
CG inversion assuming a constant phase (right). Pressure measurements were taken in a planar domain parallel to the transducer surface. Both reconstructions
show significant spatial smoothening, but the energy is spatially limited to the transducer element. Color version can be found online.Media-color 3
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Fig. 4. The kinetic energy inSv for the original velocity distribution (left), the reconstructed velocity distribution using unregularised CG inversion (middle)
and CG inversion assuming a constant phase (right), in the presence of5 % white noise added to the pressure field measurements. Pressure measurements
were taken in a planar domain parallel to the transducer surface. In the case of unregularised CG inversion, the noise is overfitted to the data, resulting in a
very noisy reconstruction. When a constant phase is assumed, virtually no noise is present and the reconstruction is almost identical to the noise-free situation
in figure 3. Color version can be found online.Media-color 4

the plot shows that, for all aperture angles, the reconstruction
error is lowest when assuming a constant phase.

The best achievable result obtained from pressure field
measurements along the parallel plane is indicated by the
gray cross in figure 7. This corresponds to capturing83.6 %
of the total power radiated by the element. Note that the
reconstruction error obtained when using a spherical section
capturing that same fraction of the total power is lower, which
indicates that a larger measurement distance between element
and hydrophone, and thus a lower signal strength, have an
adverse effect on the reconstruction.

In conclusion, for the particular case studied in these
synthetic experiments, the reconstruction error reduces from
36.0 % in the case of1681 pressure measurements taken
along a planar surface, to4.2 % in the case of1654 pressure
measurements taken along a hemisphere.

B. Real measurements

For the experimental study, a linear array containing5 ele-
ments operating at a center frequency of12.2 MHz was built.
The200 µm kerf in between elements is filled with a dielectric
for electrical insulation. The sound radiating surface of all 5
elements is covered by a monolithic matching layer. Due to
the complexity of the construction, which is shown in figure 8,
the exact motion of the transducer surface due to the excitation
of a single element is hard to predict, but it is reasonable to
assume that motion is not spatially limited to only the active
element.

In this experiment, only a single element was excited by
the Gaussian modulated electrical pulse of equation (8). The
pulse was generated by an Agilent 33250A arbitrary waveform
generator. The generated pressure field was measured using a
200 µm diameter Precision Acoustics needle hydrophone, of
which the signal was amplified by+8 dB and recorded using
an Agilent DSO7054A oscilloscope. The measurement domain
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Sp was scanned using an in-house built positioning system
with a step size of2.5 µm in all three directions. The same
planar measurement domain as in the synthetic experiments
was used. In addition, a hemisphere was traversed, but only
up to φ = 75° to avoid damage to the hydrophone caused by
physical contact with the array.

The kinetic energy distributionK(rv) of the reconstructed
velocity distributions, obtained from pressure fields measured
along both a hemisphere and a planar grid, are shown in
figure 9 in arbitrary units. In the top row, reconstructions
from pressure measurements along a planar pressure mea-
surement grid are shown, in the bottom row, reconstructions
from pressure measurements along a hemisphere. In the left
column, the unregularised CG inversion results are given, in
the right column the results obtained under the constant phase
assumption. The source signatureS(t) is estimated from the
unregularised CG inversion result by selecting the time trace
with maximum amplitude fromvn(rv , t).

For this particular transducer, the actual motion of the
transducer surface is unknown, and only the location of
the driven element is indicated by the white dashed lines.
However, synthetic studies reveal that a planar pressure mea-
surement domain introduces spatial smoothening and hence
increases the vibrating area in the reconstruction. Therefore,
the smaller vibrating area found using a hemispherical pressure
measurement domain is taken to be closer to reality. Hence,
the same observations as made with the synthetic experiments
hold, i.e., using a hemispherical measurement grid less spatial
smoothening is introduced since the vibrating region is found
to be smaller, and assuming a constant phase further reduces
the energy spread. Note that a vibrating area is found of dimen-
sions agreeing with the design to within one grid element, thus
to within 50 µm, of the actual element design. Furthermore, for
this transducer element, the active area is found to be slightly
smaller than the designed element dimensions.

However, two unexpected phenomena occur. First, apart
from the actual element, another, separate region is found to
vibrate when using unregularised CG inversion. After exami-
nation under a microscope it appeared that part of the piezo
electric material was erroneously electrically connectedand

hence acted as a second source. Especially in the reconstruc-
tion obtained using a hemispherical pressure measurement
grid, it is visible that this second region is separated from
the main element, as it is in reality, see figure 8.

Second, this additional vibrating region does not show up
in the reconstructions when a constant phase is assumed. Due
to details in the construction, this area responds differently
to electric excitation, and therefore vibrates with a different
source signatureS(t). In addition, the region is out of phase
with the actual element. Since the constant phase assumption
does not hold, the vibration of this additional region is not
accurately reconstructed.

IV. D ISCUSSION

The Rayleigh operatorR(rv, rp, ω) computes the pressure
field given a velocity distributionvn(rv, ω). For accurate
pressure fields, a dense spatial sampling is required. In this
work, however, the velocity distribution is sampled only once
per 50 µm, which amounts to2.5 points per wavelength. To
improve on the accuracy of the forward Rayleigh operator,
ideally the number of points per wavelength should be sig-
nificantly larger. Alternatively, the pressure contribution from
each point inSv could be computed using an impulse response
method. However, both these approaches are computationally
inhibitively expensive.

Pressure measurements are ideally taken with point-like
hydrophones, both to avoid spatial averaging of the pressure
field along its surface and to ensure that the hydrophone is
equally sensitive in all directions. However, current commer-
cial hydrophones typically have diameters of200 µm or more,
which is comparable to or larger than the wavelengths and el-
ement sizes studied in this work. Contrary to analytic methods
using, e.g., Weyl’s representation of the Green’s function, the
iterative approach allows both aspects, i.e., hydrophone size
and radiation pattern, to be taken into account.

Although incorporating the sensitivity pattern of the hy-
drophone is feasible, modelling a hydrophone is non-trivial, as
the construction of the hydrophone is in most cases unknown,
and its mechanical behaviour may not be straightforwardly
determined. Experiments not treated here show that assuming
the employed needle hydrophone to be point-like, i.e., with
angle independent sensitivity and no spatial averaging, yields
velocity profiles that are closer to reality than when piston
behaviour is assumed. Since the effect of a directivity pattern
can be pronounced, the directivity should only be included if
it is accurately known.

Only planar and spherical domains, both in the far-field,
were studied. However, any geometry can be used, and other
geometries might turn out to be advantageous. For instance,
instead of a sphere, an ellipsoid can be used. In this case the
distance between the active element and pressure measurement
point can be smaller, and hence the signal-to-noise ratio higher.
The best reconstructions are expected when the largest fraction
of the radiated acoustic energy is captured by the chosen
domain.

In practice, the constant phase assumption can only be made
for single elements, or for arrays with identical elements.
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Fig. 8. Microscopic image of the transducer array. In white,the active element
(bottom) and an erroneously electrically connected regionof piezoelectric
material (top) are indicated. The horizontal dark line is a saw cut separating
the active areas from the bulk material.

Due to minor differences in construction between different
elements, the mechanical behaviour of the various elements
may differ, and hence the response to an electrical excitation
may not be the same for different elements. For these arrays,
problems may arise, as is shown in figure 9, where it is shown
that velocity distributions with a spatially varying source
signature are not accurately reconstructed.

In addition, in synthetic experiments not shown here it was
found that areas oscillating with an identical source signature,
but with different phase, are not reconstructed either. In fact,
these areas are absent in the reconstruction. Therefore, for
transducer arrays composed of dissimilar elements, and for
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Fig. 9. The kinetic energy content, in arbitrary units, in velocity distribution
reconstructions from real pressure field measurements on a parallel plane
(top row) or on a hemisphere (bottom row). The dimensions of the physical
element are indicated by the white lines. The reconstructions from spherical
measurements consistently yield smaller vibrating regions that are closer in
dimensions to the actual element size. The region aroundx = 0.1 mm,
y = 0.7 mm originates from a part of the transducer that is erroneously
electrically connected. This part of the transducer vibrates with a different
sourcelet and hence is not accurately reproduced when the constant phase
assumption is made. Color version can be found online.Media-color 9

phased or focussed arrays, either the unregularised CG scheme
should be applied, or different regularisation techniquesshould
be developed.

V. CONCLUSION

A method is presented that reconstructs the velocity distri-
bution of the surface of an ultrasound transducer from pressure
field measurements. The method employs a conjugate gradient
inversion scheme to solve the Rayleigh integral of the first
kind, which relates an unknown velocity distribution to a
known pressure field measurement. In this work, only velocity
distributions defined on a planar domain are considered, and
pressure field measurements are performed on either a planar
domain parallel to the transducer surface, or a hemispherical
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domain. However, both the velocity distribution and pressure
field measurements can be defined on arbitrarily shaped do-
mains.

The results show that significantly more accurate reconstruc-
tions are obtained when a hemispherical pressure measurement
domain is used. The improvement is caused by the fact that,
using a hemisphere, all radiated acoustic energy is captured,
whereas in the case of a finite planar domain, part of the energy
propagates outside of the aperture. In synthetic experiments,
using the same number of pressure measurements and the
same measurement distance, the error in the resulting velocity
distribution decreases from36 % in the planar case to4.2 %
in the semi-spherical case.

In addition, the iterative inversion scheme allows for the
application of regularisation techniques. For instance, when the
assumption is made that all vibrating points on the transducer
surface oscillate in phase with the same source signature, but
with a spatially varying amplitude, the inverse extrapolation
results further improve and spatial smoothening, in both syn-
thetic and real experiments, is reduced. Consequently, theover-
estimation of cross-talk observed especially in the case ofa
planar pressure measurement domain is diminished. However,
results show that this assumption is only valid for a single
element transducers or for arrays with identical elements,as
areas that vibrate with a different source signature are notwell
reconstructed.

Using the method, accurate velocity distribution reconstruc-
tions with resolutions down to50 µm are obtained for a
transducer element of dimensions700 µm× 200 µm operating
at a center frequency of12.2 MHz. The measurements were
performed using a needle hydrophone with a diameter of
200 µm, positioned1.98 mm (= 16 wavelengths) away from
the transducer.
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