53 research outputs found

    Development of a sequential workflow based on LC-PRM for the verification of endometrial cancer protein biomarkers in uterine aspirate samples

    Get PDF
    Altres ajuts: The present work has been also funded by the "Fonds National de la Recherche du Luxembourg" (FNR) via the PEARL-CPIL program to BD, and an AFR grant to AL (PDR 2013-2, Project Reference 6835664). The authors would like to acknowledge the work of all clinicians that have participated in the recruitment of clinical samples. We thank the patients for their willingness to participate in the study.About 30% of endometrial cancer (EC) patients are diagnosed at an advanced stage of the disease, which is associated with a drastic decrease in the 5-year survival rate. The identification of biomarkers in uterine aspirate samples, which are collected by a minimally invasive procedure, would improve early diagnosis of EC. We present a sequential workflow to select from a list of potential EC biomarkers, those which are the most promising to enter a validation study. After the elimination of confounding contributions by residual blood proteins, 52 potential biomarkers were analyzed in uterine aspirates from 20 EC patients and 18 non-EC controls by a high-resolution accurate mass spectrometer operated in parallel reaction monitoring mode. The differential abundance of 26 biomarkers was observed, and among them ten proteins showed a high sensitivity and specificity (AUC > 0.9). The study demonstrates that uterine aspirates are valuable samples for EC protein biomarkers screening. It also illustrates the importance of a biomarker verification phase to fill the gap between discovery and validation studies and highlights the benefits of high resolution mass spectrometry for this purpose. The proteins verified in this study have an increased likelihood to become a clinical assay after a subsequent validation phase

    Implications of New Proteomics Strategies for Biology and Medicine

    No full text

    A quality control of proteomic experiments based on multiple isotopologous internal standards

    Get PDF
    The harmonization of proteomics experiments facilitates the exchange and comparison of results. The definition of standards and metrics ensures reliable and consistent data quality. An internal quality control procedure was developed to assess the different steps of a proteomic analysis workflow and perform a system suitability test. The method relies on a straightforward protocol using a simple mixture of exogenous proteins, and the sequential addition of two sets of isotopically labeled peptides added to reference samples. This internal quality control procedure was applied to plasma samples to demonstrate its easy implementation, which makes it generic for most proteomics applications

    Improvement of the Performance of Targeted LCā€“MS Assays through Enrichment of Histidine-Containing Peptides

    No full text
    Mass spectrometric-based quantification using targeted methods has matured during the past decade and is now commonly used in proteomics. However, the reliability of protein quantification in complex matrixes using selected reaction monitoring is often impaired by interfering signals arising from coelution of nontargeted components. Sample preparation methods resulting in the reduction of the number of peptides present in the mixture minimizes this effect. One solution consists in the selective capture of peptides containing infrequent amino acids. The enrichment of histidine-containing peptides via immobilized metal-ion affinity chromatography loaded with Cu<sup>2+</sup> ions (IMAC-Cu) was applied in a quantitative workflow and found to be a simple and cost effective method for the reduction of sample complexity with high recovery and selectivity. When applied to a series of depleted human plasma digests, the method decreased nonspecific signals, resulting in a more precise and robust protein quantification. The method was also shown to be an alternative to HSA/IgG depletion during plasma protein analysis. This method, used in conjunction with recent improvements in the instrumentā€™s peak capacity, addresses a bottleneck generally encountered in quantitative proteomics studies by providing the robustness and throughput required for the analysis of large sample series without compromising the number of proteins monitored

    Improvement of the Performance of Targeted LCā€“MS Assays through Enrichment of Histidine-Containing Peptides

    No full text
    Mass spectrometric-based quantification using targeted methods has matured during the past decade and is now commonly used in proteomics. However, the reliability of protein quantification in complex matrixes using selected reaction monitoring is often impaired by interfering signals arising from coelution of nontargeted components. Sample preparation methods resulting in the reduction of the number of peptides present in the mixture minimizes this effect. One solution consists in the selective capture of peptides containing infrequent amino acids. The enrichment of histidine-containing peptides via immobilized metal-ion affinity chromatography loaded with Cu<sup>2+</sup> ions (IMAC-Cu) was applied in a quantitative workflow and found to be a simple and cost effective method for the reduction of sample complexity with high recovery and selectivity. When applied to a series of depleted human plasma digests, the method decreased nonspecific signals, resulting in a more precise and robust protein quantification. The method was also shown to be an alternative to HSA/IgG depletion during plasma protein analysis. This method, used in conjunction with recent improvements in the instrumentā€™s peak capacity, addresses a bottleneck generally encountered in quantitative proteomics studies by providing the robustness and throughput required for the analysis of large sample series without compromising the number of proteins monitored

    Peptides Quantification by Liquid Chromatography with Matrix-Assisted Laser Desorption/Ionization and Selected Reaction Monitoring Detection

    Full text link
    We present a novel analytical platform for peptides quantitative assays in biological matrices based on microscale liquid chromatography fractionation and matrix-assisted laser desorption/ionization mass spectrometric detection using the selected reaction monitoring (SRM) mode. The MALDI source was equipped with a high frequency Nd:YAG laser (1000 Hz) and mounted on a triple quadrupole / linear ion trap mass spectrometer (MALDI-QqQLIT). Compared to conventional LC-ESI-SRM/MS, the separated analytes are ā€œtime-frozenā€ onto the MALDI plate in fractions and navigation through the LC chromatogram makes possible to perform SRM experiments as well as enhanced product ion spectra acquisition for confirmatory analyses without time constraints. The LC spots were analyzed using different rastering speeds ranging from 0.25 to 4 mm/sec with the shortest analysis time of 425 ms/spot. Since the LC runs can be multiplexed and do not need a comprehensive investigation, the present platform offers a valuable alternative to LC-ESI-SRM/MS for high throughput proteomic analyses. In addition, the derivatization of the N-terminal a-amino group by sulfonation was found to be key for the fragmentation of singly charged peptides under low collision energy regime. Under such conditions, yion series were observed in the MS/MS spectra, and thus the design of SRM experiments was greatly simplified. The quantitative performance of the platform was compared to that of LC-ESI-SRM/MS by spiking yeast tryptic peptides in human plasma digests. Both platforms exhibited similar sensitivities, accuracy (within +/-20%) and precision (under 20%) in the relative quantification mode. As a proof of principle, the relative and absolute quantification of proteins associated with glycolysis, glyoxylate and tricarboxylic acid (TCA) cycles over a growth time course of Saccharomyces cerevisiae on glucose media, was successfully performed using isotopic dilution
    • ā€¦
    corecore