396 research outputs found

    Estimating carbon storage in windbreak trees on U.S. agricultural lands

    Get PDF
    Assessing carbon (C) capture and storage potential by the agroforestry practice of windbreaks has been limited. This is due, in part, to a lack of suitable data and associated models for estimating tree biomass and C for species growing under more opengrown conditions such as windbreaks in the Central Plains region of the United States (U.S.). We evaluated 15 allometric models using destructively sampled Pinus ponderosa (Lawson & C. Lawson) data from field windbreaks in Nebraska and Montana. Several goodness-of-fit metrics were used to select the optimal model. The Jenkins’ et al. model was then used to estimate biomass for 16 tree species in windbreaks projected over a 50 year time horizon in nine continental U.S. regions. Carbon storage potential in the windbreak scenarios ranged from 1.07 ± 0.21 to 3.84 ± 0.04 Mg C ha-1 year-1 for conifer species and from 0.99 ± 0.16 to 13.6 ± 7.72 Mg C ha-1 year-1 for broadleaved deciduous species during the 50 year period. Estimated mean C storage potentials across species and regions were 2.45 ± 0.42 and 4.39 ± 1.74 Mg C ha-1 year-1 for conifer and broadleaved deciduous species, respectively. Such information enhances our capacity to better predict the C sequestration potential of windbreaks associated with whole farm/ranch operations in the U.S

    Estimating carbon storage in windbreak trees on U.S. agricultural lands

    Get PDF
    Assessing carbon (C) capture and storage potential by the agroforestry practice of windbreaks has been limited. This is due, in part, to a lack of suitable data and associated models for estimating tree biomass and C for species growing under more opengrown conditions such as windbreaks in the Central Plains region of the United States (U.S.). We evaluated 15 allometric models using destructively sampled Pinus ponderosa (Lawson & C. Lawson) data from field windbreaks in Nebraska and Montana. Several goodness-of-fit metrics were used to select the optimal model. The Jenkins’ et al. model was then used to estimate biomass for 16 tree species in windbreaks projected over a 50 year time horizon in nine continental U.S. regions. Carbon storage potential in the windbreak scenarios ranged from 1.07 ± 0.21 to 3.84 ± 0.04 Mg C ha-1 year-1 for conifer species and from 0.99 ± 0.16 to 13.6 ± 7.72 Mg C ha-1 year-1 for broadleaved deciduous species during the 50 year period. Estimated mean C storage potentials across species and regions were 2.45 ± 0.42 and 4.39 ± 1.74 Mg C ha-1 year-1 for conifer and broadleaved deciduous species, respectively. Such information enhances our capacity to better predict the C sequestration potential of windbreaks associated with whole farm/ranch operations in the U.S

    Intermanifold similarities in partial photoionization cross sections of helium

    Get PDF
    Using the eigenchannel R-matrix method we calculate partial photoionization cross sections from the ground state of the helium atom for incident photon energies up to the N=9 manifold. The wide energy range covered by our calculations permits a thorough investigation of general patterns in the cross sections which were first discussed by Menzel and co-workers [Phys. Rev. A {\bf 54}, 2080 (1996)]. The existence of these patterns can easily be understood in terms of propensity rules for autoionization. As the photon energy is increased the regular patterns are locally interrupted by perturber states until they fade out indicating the progressive break-down of the propensity rules and the underlying approximate quantum numbers. We demonstrate that the destructive influence of isolated perturbers can be compensated with an energy-dependent quantum defect.Comment: 10 pages, 10 figures, replacement with some typos correcte

    Reactivity mapping of nanoscale defect chemistry under electrochemical reaction conditions

    No full text

    Mirror Position Determination for the Alignment of Cherenkov Telescopes

    Full text link
    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures to map the faint Cherenkov light emitted in extensive air showers onto their image sensors. Segmented reflectors fulfill these needs using mass produced and light weight mirror facets. However, as the overall image is the sum of the individual mirror facet images, alignment is important. Here we present a method to determine the mirror facet positions on a segmented reflector in a very direct way. Our method reconstructs the mirror facet positions from photographs and a laser distance meter measurement which goes from the center of the image sensor plane to the center of each mirror facet. We use our method to both align the mirror facet positions and to feed the measured positions into our IACT simulation. We demonstrate our implementation on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and implementation demonstratio

    Resonance structure in the Li^- photodetachment cross section

    Full text link
    We report on the first observation of resonance structure in the total cross section for the photodetachment of Li^-. The structure arises from the autodetaching decay of doubly excited ^1P states of Li^- that are bound with respect to the 3p state of the Li atom. Calculations have been performed for both Li^- and H^- to assist in the identification of these resonances. The lowest lying resonance is a symmetrically excited intrashell resonance. Higher lying asymmetrically excited intershell states are observed which converge on the Li(3p) limit.Comment: 4 pages, 2 figure, 19 references, RevTeX, figures in ep

    Electronic and structural properties of vacancies on and below the GaP(110) surface

    Full text link
    We have performed total-energy density-functional calculations using first-principles pseudopotentials to determine the atomic and electronic structure of neutral surface and subsurface vacancies at the GaP(110) surface. The cation as well as the anion surface vacancy show a pronounced inward relaxation of the three nearest neighbor atoms towards the vacancy while the surface point-group symmetry is maintained. For both types of vacancies we find a singly occupied level at mid gap. Subsurface vacancies below the second layer display essentially the same properties as bulk defects. Our results for vacancies in the second layer show features not observed for either surface or bulk vacancies: Large relaxations occur and both defects are unstable against the formation of antisite vacancy complexes. Simulating scanning tunneling microscope pictures of the different vacancies we find excellent agreement with experimental data for the surface vacancies and predict the signatures of subsurface vacancies.Comment: 10 pages, 6 figures, Submitted to Phys. Rev. B, Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    Scanning tunneling microscopy and spectroscopy at low temperatures of the (110) surface of Te doped GaAs single crystals

    Full text link
    We have performed voltage dependent imaging and spatially resolved spectroscopy on the (110) surface of Te doped GaAs single crystals with a low temperature scanning tunneling microscope (STM). A large fraction of the observed defects are identified as Te dopant atoms which can be observed down to the fifth subsurface layer. For negative sample voltages, the dopant atoms are surrounded by Friedel charge density oscillations. Spatially resolved spectroscopy above the dopant atoms and above defect free areas of the GaAs (110) surface reveals the presence of conductance peaks inside the semiconductor band gap. The appearance of the peaks can be linked to charges residing on states which are localized within the tunnel junction area. We show that these localized states can be present on the doped GaAs surface as well as at the STM tip apex.Comment: 8 pages, 8 figures, accepted for publication in PR

    FACT -- the First Cherenkov Telescope using a G-APD Camera for TeV Gamma-ray Astronomy (HEAD 2010)

    Get PDF
    Geiger-mode Avalanche Photodiodes (G-APD) bear the potential to significantly improve the sensitivity of Imaging Air Cherenkov Telescopes (IACT). We are currently building the First G-APD Cherenkov Telescope (FACT) by refurbishing an old IACT with a mirror area of 9.5 square meters and construct a new, fine pixelized camera using novel G-APDs. The main goal is to evaluate the performance of a complete system by observing very high energy gamma-rays from the Crab Nebula. This is an important field test to check the feasibility of G-APD-based cameras to replace at some time the PMT-based cameras of planned future IACTs like AGIS and CTA. In this article, we present the basic design of such a camera as well as some important details to be taken into account.Comment: Poster shown at HEAD 2010, Big Island, Hawaii, March 1-4, 201
    • …
    corecore