17,167 research outputs found

    Quark masses in QCD: a progress report

    Full text link
    Recent progress on QCD sum rule determinations of the light and heavy quark masses is reported. In the light quark sector a major breakthrough has been made recently in connection with the historical systematic uncertainties due to a lack of experimental information on the pseudoscalar resonance spectral functions. It is now possible to suppress this contribution to the 1% level by using suitable integration kernels in Finite Energy QCD sum rules. This allows to determine the up-, down-, and strange-quark masses with an unprecedented precision of some 8-10%. Further reduction of this uncertainty will be possible with improved accuracy in the strong coupling, now the main source of error. In the heavy quark sector, the availability of experimental data in the vector channel, and the use of suitable multipurpose integration kernels allows to increase the accuracy of the charm- and bottom-quarks masses to the 1% level.Comment: Invited review paper to be published in Modern Physics Letters

    Azimuthal Correlations in p-p collisions

    Full text link
    We report the analysis of experimental azimuthal correlations measured by STAR in p-p collisions at sNN\sqrt{s_{NN}} = 200 GeV. We conclude that for a fit of data using Pythia event generator we need to include two values of kTk_{T}.Comment: 4 page, 3 figures. Prepared for X Mexican Workshop on Particles and Fields. Morelia Mich. Nov 7-12, 200

    Corrections to the SU(3)×SU(3){\bf SU(3)\times SU(3)} Gell-Mann-Oakes-Renner relation and chiral couplings L8rL^r_8 and H2rH^r_2

    Get PDF
    Next to leading order corrections to the SU(3)×SU(3)SU(3) \times SU(3) Gell-Mann-Oakes-Renner relation (GMOR) are obtained using weighted QCD Finite Energy Sum Rules (FESR) involving the pseudoscalar current correlator. Two types of integration kernels in the FESR are used to suppress the contribution of the kaon radial excitations to the hadronic spectral function, one with local and the other with global constraints. The result for the pseudoscalar current correlator at zero momentum is ψ5(0)=(2.8±0.3)×103GeV4\psi_5(0) = (2.8 \pm 0.3) \times 10^{-3} GeV^{4}, leading to the chiral corrections to GMOR: δK=(55±5)\delta_K = (55 \pm 5)%. The resulting uncertainties are mostly due to variations in the upper limit of integration in the FESR, within the stability regions, and to a much lesser extent due to the uncertainties in the strong coupling and the strange quark mass. Higher order quark mass corrections, vacuum condensates, and the hadronic resonance sector play a negligible role in this determination. These results confirm an independent determination from chiral perturbation theory giving also very large corrections, i.e. roughly an order of magnitude larger than the corresponding corrections in chiral SU(2)×SU(2)SU(2) \times SU(2). Combining these results with our previous determination of the corrections to GMOR in chiral SU(2)×SU(2)SU(2) \times SU(2), δπ\delta_\pi, we are able to determine two low energy constants of chiral perturbation theory, i.e. L8r=(1.0±0.3)×103L^r_8 = (1.0 \pm 0.3) \times 10^{-3}, and H2r=(4.7±0.6)×103H^r_2 = - (4.7 \pm 0.6) \times 10^{-3}, both at the scale of the ρ\rho-meson mass.Comment: Revised version with minor correction

    Zero-energy peak of the density of states and localization properties of a one-dimensional Frenkel exciton: Off-diagonal disorder

    Get PDF
    We study a one-dimensional Frenkel Hamiltonian with off-diagonal disorder, focusing our attention on the physical nature of the zero-energy peak of the density of states. The character of excitonic states (localized or delocalized) is also examined in the vicinity of this peak. It is shown that the state being responsible for the peak is localized. A detailed comparison of the nearest-neighbor approach with the long-range dipole-dipole coupling is performed.Comment: 15 pages with 7 figures (REVTeX). To appear in Physical Review

    Understanding delocalization in the Continuous Random Dimer model

    Get PDF
    We propose an explanation of the bands of extended states appearing in random one dimensional models with correlated disorder, focusing on the Continuous Random Dimer model [A.\ S\'{a}nchez, E.\ Maci\'a, and F.\ Dom\'\i nguez-Adame, Phys.\ Rev.\ B {\bf 49}, 147 (1994)]. We show exactly that the transmission coefficient at the resonant energy is independent of the number of host sites between two consecutive dimers. This allows us to understand why are there bands of extended states for every realization of the model as well as the dependence of the bandwidths on the concentration. We carry out a perturbative calculation that sheds more light on the above results. In the conclusion we discuss generalizations of our results to other models and possible applications which arise from our new insight of this problem.Comment: REVTeX 3.0, 4 pages, 4 figures (hard copy on request from [email protected]), Submitted to Phys Rev

    Large Scale Morphological Segregation in Optically Selected Galaxy Redshift Catalogs

    Full text link
    We present the results of an exhaustive analysis of the morphological segregation of galaxies in the CfA and SSRS catalogs through the scaling formalism. Morphological segregation between ellipticals and spirals has been detected at scales up to 15-20 h1^{-1} Mpc in the CfA catalog, and up to 20-30 h1^{-1} Mpc in the SSRS catalog. Moreover, it is present not only in the densest areas of the galaxy distribution, but also in zones of moderate density.Comment: 9 pages, (1 figure included), uuencode compressed Postscript, (accepted for publication in ApJ Letters), FTUAM-93-2
    corecore