48 research outputs found

    The SOPHIE search for northern extrasolar planets XIV. A temperate (Teq ~ 300 K) super-earth around the nearby star Gliese 411

    Get PDF
    Periodic radial velocity variations in the nearby M-dwarf star Gl 411 are reported, based on measurements with the SOPHIE spectrograph. Current data do not allow us to distinguish between a 12.95-day period and its one-day alias at 1.08 days, but favour the former slightly. The velocity variation has an amplitude of 1.6 m s−1, making this the lowest-amplitude signal detected with SOPHIE up to now. We have performed a detailed analysis of the significance of the signal and its origin, including extensive simulations with both uncorrelated and correlated noise, representing the signal induced by stellar activity. The signal is significantly detected, and the results from all tests point to its planetary origin. Additionally, the presence of an additional acceleration in the velocity time series is suggested by the current data. On the other hand, a previously reported signal with a period of 9.9 days, detected in HIRES velocities of this star, is not recovered in the SOPHIE data. An independent analysis of the HIRES dataset also fails to unveil the 9.9-day signal. If the 12.95-day period is the real one, the amplitude of the signal detected with SOPHIE implies the presence of a planet, called Gl 411 b, with a minimum mass of around three Earth masses, orbiting its star at a distance of 0.079 AU. The planet receives about 3.5 times the insolation received by Earth, which implies an equilibrium temperature between 256 and 350 K, and makes it too hot to be in the habitable zone. At a distance of only 2.5 pc, Gl 411 b, is the third closest low-mass planet detected to date. Its proximity to Earth will permit probing its atmosphere with a combination of high-contrast imaging and high-dispersion spectroscopy in the next decade

    The GRANDMA network in preparation for the fourth gravitational-wave observing run

    Get PDF
    GRANDMA is a world-wide collaboration with the primary scientific goal ofstudying gravitational-wave sources, discovering their electromagneticcounterparts and characterizing their emission. GRANDMA involves astronomers,astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now atruly global network of telescopes, with (so far) 30 telescopes in bothhemispheres. It incorporates a citizen science programme (Kilonova-Catcher)which constitutes an opportunity to spread the interest in time-domainastronomy. The telescope network is an heterogeneous set of already-existingobserving facilities that operate coordinated as a single observatory. Withinthe network there are wide-field imagers that can observe large areas of thesky to search for optical counterparts, narrow-field instruments that dotargeted searches within a predefined list of host-galaxy candidates, andlarger telescopes that are devoted to characterization and follow-up of theidentified counterparts. Here we present an overview of GRANDMA after the thirdobserving run of the LIGO/VIRGO gravitational-wave observatories in 2019−20202019-2020and its ongoing preparation for the forthcoming fourth observational campaign(O4). Additionally, we review the potential of GRANDMA for the discovery andfollow-up of other types of astronomical transients.<br

    Bistatic GPR Measurements in the Egyptian Western Desert - Measured and Simulated data.

    No full text
    The TAPIR (Terrestrial And Planetary Investigation Radar) instrument has been designed at CETP (Centre d'etude des Environnements Terrestre et Planetaires) to explore the deep Martian subsurface (down to a few kilometers) and to detect liquid water reservoirs. TAPIR is an impulse ground penetrating radar operating at central frequencies ranging from 2 to 4 MHz operating from the surface. In November 2005, an updated version of the instrument working either in monostatic or in bi-static mode was tested in the Egyptian Western Desert. The work presented here focuses on the bi-static measurements performed on the Abou Saied plateau which shows a horizontally layered sub-surface. The electromagnetic signal was transmitted using one of the two orthogonal 70 m loaded electrical dipole antennas of the transmitting GPR. A second GPR, 50 or 100 meters apart, was dedicated to the signal reception. The received waves were characterized by a set of 5 measurements performed on the receiving GPR : the two horizontal components of the electric field and the three composants of the magnetic field. They were used to compute the direction of arrival of the incoming waves and to retrieve more accurately their propagation path and especially to discriminate between waves due to some sub-surface reflecting structure and those due to interaction with the surface clutter. A very efficient synchronization between the two radars enabled us to perform coherent additions up to 231 which improves dramatically the obtained signal to noise ratio. Complementary electromagnetic measurements were conducted on the same site by the LPI (Lunar and Planetary Institute) and the SwRI (Southwest Research Institute). They provided independent information which helped the interpretation of the TAPIR data. Accurate simulations obtained by FDTD taking into account the information available are presented and used for both the interpretation of the measured data and the validation of the instrument

    An Imaging HF GPR Using Stationary Antennas: Experimental Validation Over the Antarctic Ice Sheet

    No full text
    International audienceTerrestrial And Planetary Imaging Radar (TAPIR) is an innovative high-frequency ground-penetrating radar (GPR) developed in the frame of the Martian NetLander mission to probe the subsurface down to kilometric depths. Unlike most GPRs, TAPIR is able to image underground reflectors with stationary antennas. In this paper, after a brief presentation of the instrument, we describe the method developed to interpret data collected during the RAdar of NEtlander in Terre Ade acutelie (RANETA) field survey in Antarctica. This method consists of retrieving the direction of arrival of each detected echo through the measurement of five components of the electromagnetic field (the three magnetic components and the horizontal components of the electric field). Thus, both the range and the direction of each individual reflection or diffraction due to the ice-bedrock interface are resolved. We validated this method on finite-difference time-domain numerically simulated data for different subsurface configurations before applying it to RANETA observations. In particular, the irregular topography of the bedrock in two sounding sites was revealed. We discuss the accuracy of our result
    corecore