4 research outputs found

    Algoritmi za određivanje najbližeg para

    Get PDF
    U ovom radu smo proučili Å”est algoritama za rjeÅ”avanje problema najbližeg para u R2\mathbb{R}^{2}. Pokazali smo kako se problem može rijeÅ”iti determinističkim algoritmom složenosti O(nlogā”n)O(n\log n), a nedeterminističkim algoritmima složenost možemo spustiti do O(n)O(n). Ipak, testiranjem smo utvrdili da je na praktičnim veličinama ulaznih podataka od egzaktnih algoritama najefikasniji onaj koji je predstavljen u odjeljku 3.1 pod imenom Divide_and_Conquer, čija složenost je O(nlogā”2n)O(n\log^{2}n). Na kraju smo predstavili i jedan parametrizirani heuristički algoritam složenosti O(nlogā”n)O(\frac{n}{\log n}) koji pronalazi približno rjeÅ”enje, čija točnost se može povećati nauÅ”trb vremena izvođenja.In this paper we have examined six different algorithms for solving the closest pair of points problem in R2\mathbb{R}^{2}. We have shown that the problem can be solved with deterministic algorithms in O(nlogā”n)O(n\log n) time and in O(n)O(n) time with non-deterministic algorithms. However, testing these algorithms has revealed that, for practical input sizes, the most efficient exact algorithm is the one we have labelled Divide_and_Conquer which was presented in section 3.1 and which runs in O(nlogā”2n)O(n\log^{2}n)time. In the final chapter we have presented a parameterised simulated annealing algorithm which finds an approximate solution in O(nlogā”n)O(\frac{n}{\log n}) time, accuracy of which can be increased at the expense of speed

    Algoritmi za određivanje najbližeg para

    Get PDF
    U ovom radu smo proučili Å”est algoritama za rjeÅ”avanje problema najbližeg para u R2\mathbb{R}^{2}. Pokazali smo kako se problem može rijeÅ”iti determinističkim algoritmom složenosti O(nlogā”n)O(n\log n), a nedeterminističkim algoritmima složenost možemo spustiti do O(n)O(n). Ipak, testiranjem smo utvrdili da je na praktičnim veličinama ulaznih podataka od egzaktnih algoritama najefikasniji onaj koji je predstavljen u odjeljku 3.1 pod imenom Divide_and_Conquer, čija složenost je O(nlogā”2n)O(n\log^{2}n). Na kraju smo predstavili i jedan parametrizirani heuristički algoritam složenosti O(nlogā”n)O(\frac{n}{\log n}) koji pronalazi približno rjeÅ”enje, čija točnost se može povećati nauÅ”trb vremena izvođenja.In this paper we have examined six different algorithms for solving the closest pair of points problem in R2\mathbb{R}^{2}. We have shown that the problem can be solved with deterministic algorithms in O(nlogā”n)O(n\log n) time and in O(n)O(n) time with non-deterministic algorithms. However, testing these algorithms has revealed that, for practical input sizes, the most efficient exact algorithm is the one we have labelled Divide_and_Conquer which was presented in section 3.1 and which runs in O(nlogā”2n)O(n\log^{2}n)time. In the final chapter we have presented a parameterised simulated annealing algorithm which finds an approximate solution in O(nlogā”n)O(\frac{n}{\log n}) time, accuracy of which can be increased at the expense of speed

    Algoritmi za određivanje najbližeg para

    Get PDF
    U ovom radu smo proučili Å”est algoritama za rjeÅ”avanje problema najbližeg para u R2\mathbb{R}^{2}. Pokazali smo kako se problem može rijeÅ”iti determinističkim algoritmom složenosti O(nlogā”n)O(n\log n), a nedeterminističkim algoritmima složenost možemo spustiti do O(n)O(n). Ipak, testiranjem smo utvrdili da je na praktičnim veličinama ulaznih podataka od egzaktnih algoritama najefikasniji onaj koji je predstavljen u odjeljku 3.1 pod imenom Divide_and_Conquer, čija složenost je O(nlogā”2n)O(n\log^{2}n). Na kraju smo predstavili i jedan parametrizirani heuristički algoritam složenosti O(nlogā”n)O(\frac{n}{\log n}) koji pronalazi približno rjeÅ”enje, čija točnost se može povećati nauÅ”trb vremena izvođenja.In this paper we have examined six different algorithms for solving the closest pair of points problem in R2\mathbb{R}^{2}. We have shown that the problem can be solved with deterministic algorithms in O(nlogā”n)O(n\log n) time and in O(n)O(n) time with non-deterministic algorithms. However, testing these algorithms has revealed that, for practical input sizes, the most efficient exact algorithm is the one we have labelled Divide_and_Conquer which was presented in section 3.1 and which runs in O(nlogā”2n)O(n\log^{2}n)time. In the final chapter we have presented a parameterised simulated annealing algorithm which finds an approximate solution in O(nlogā”n)O(\frac{n}{\log n}) time, accuracy of which can be increased at the expense of speed

    Å tetni agensi pri proizvodnji anoda

    Get PDF
    The aim of this study was to assess to which extent the modernisation of an anode plant had reduced occupational chemical health hazards for jobs with the highest potential of exposure. Periodical measurements of dust and gases were performed at the same workplaces using the same methods, before and after modernisation. These measurements were compared with the recommended standards. Before modernisation the concentrations of total dust, carbon monoxide, carbon dioxide, sulphur dioxide, hydrogen fluoride, benzene, and phenol were above the recommended standards in 56.9 % (74/130) of the samples. After modernisation, only 12.3 % (21/171) of the samples were non-conforming. Before modernisation, workers were exposed to higher concentrations of all agents in all production sections. After modernisation, dust remained the primary pollutant in harmful concentrations in the anode baking furnace (GM=22.1 mg m-3) and in the anode rodding room (GM=22.1 mg m-3), hydrogen fluoride in the anode rodding room (GM=4.2 mg m-3), and sulphur dioxide in all production sections. As plant modernisation has not completely resolved the exposure issue, stringent compliance to safety rules and regular medical checkups are necessary.Cilj je rada procijeniti učinak modernizacije tehnoloÅ”kog procesa u Tvornici anoda na prisutnost i razinu koncentracije praÅ”ine i plinova Å”tetnih za zdravlje radnika u radnom okoliÅ”u, kao i na poslove s velikim potencijalom za izloženost zaposlenih. U tu svrhu uspoređivani su rezultati obveznih periodičkih mjerenja kemijskih čimbenika provedeni prije i nakon modernizacije. Mjerenja su provedena na istim radnim mjestima i istim metodama tijekom radnih smjena i uspoređeni sa sadaÅ”njim nacionalnim Standardom. Prije modernizacije, koncentracije ukupne praÅ”ine i plinova: ugljikova(II) oksida, ugljikova(IV) oksida, sumporova(IV) oksida, fluorovodika, benzena i fenola prelazile su preporučene vrijednosti u 56,9 % uzoraka, a nakon modernizacije u 12,3 % (21/171) uzoraka. Prije modernizacije radnici su istodobno na velikom broju radnih mjesta svih odjela bili izloženi prekomjernim koncentracijama Å”tetnih kemijskih čimbenika. Nakon modernizacije praÅ”ina je i dalje prisutna u visokim koncentracijama pri pečenju anoda (GM=22,1 mg m-3), kao i pri zalijevanju anoda (GM=22,1 mg m-3), a geometrijska sredina koncentracije fluorovodika pri zalijevanju anoda iznosi 4,2 mg m-3, dok je sumporov(IV) oksid prisutan u svim fazama proizvodnje anoda u koncentracijama Å”tetnim za zdravlje radnika. Modernizacijom tehnoloÅ”kog procesa smanjene su prisutnost i koncentracije kemijskih čimbenika u radnom okoliÅ”u. Međutim, izloženost praÅ”ini, sumporovu(IV) oksidu i fluorovodiku samo je djelomično smanjena
    corecore