research

Algoritmi za određivanje najbližeg para

Abstract

U ovom radu smo proučili šest algoritama za rješavanje problema najbližeg para u R2\mathbb{R}^{2}. Pokazali smo kako se problem može riješiti determinističkim algoritmom složenosti O(nlogn)O(n\log n), a nedeterminističkim algoritmima složenost možemo spustiti do O(n)O(n). Ipak, testiranjem smo utvrdili da je na praktičnim veličinama ulaznih podataka od egzaktnih algoritama najefikasniji onaj koji je predstavljen u odjeljku 3.1 pod imenom Divide_and_Conquer, čija složenost je O(nlog2n)O(n\log^{2}n). Na kraju smo predstavili i jedan parametrizirani heuristički algoritam složenosti O(nlogn)O(\frac{n}{\log n}) koji pronalazi približno rješenje, čija točnost se može povećati nauštrb vremena izvođenja.In this paper we have examined six different algorithms for solving the closest pair of points problem in R2\mathbb{R}^{2}. We have shown that the problem can be solved with deterministic algorithms in O(nlogn)O(n\log n) time and in O(n)O(n) time with non-deterministic algorithms. However, testing these algorithms has revealed that, for practical input sizes, the most efficient exact algorithm is the one we have labelled Divide_and_Conquer which was presented in section 3.1 and which runs in O(nlog2n)O(n\log^{2}n)time. In the final chapter we have presented a parameterised simulated annealing algorithm which finds an approximate solution in O(nlogn)O(\frac{n}{\log n}) time, accuracy of which can be increased at the expense of speed

    Similar works